New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Primitivwurzel - Wikipedia

Primitivwurzel

aus Wikipedia, der freien Enzyklopädie

Die Primitivwurzel ist ein Begriff aus dem mathematischen Teilgebiet Zahlentheorie. Eine Primitivwurzel zeichnet sich dadurch aus, dass jedes Element eines primen Restesystems als Potenz dieser Primitivwurzel dargestellt werden kann. Beispielsweise ist die 3 eine Primitivwurzel modulo 7, da gilt

3^0 \equiv 1\ \pmod 7
3^1 \equiv 3\ \pmod 7
3^2 \equiv 2\ \pmod 7
3^3 \equiv 6\ \pmod 7
3^4 \equiv 4\ \pmod 7
3^5 \equiv 5\ \pmod 7

Es lassen sich also alle Elemente 1, 2, \ldots , 6 der primen Restklassengruppe modulo 7 als Potenzen von 3 darstellen.

Inhaltsverzeichnis

[Bearbeiten] Die genaue mathematische Definition

In der Zahlentheorie heißt eine ganze Zahl a Primitivwurzel modulo m, wenn die Restklasse a + m\mathbb{Z} die prime Restklassengruppe ( \mathbb{Z} /m\mathbb{Z} )^\times erzeugt. Dies bedeutet anders ausgedrückt, dass eine Zahl a \in \mathbb{N} genau dann eine Primitivwurzel modulo m ist, wenn gilt

\operatorname{ord}_m(a)=\varphi(m).

Hierbei ist \varphi die Eulersche φ-Funktion und \operatorname{ord}_m(a) die multiplikative Ordnung modulo m.

Ist a speziell eine Primitivwurzel einer Primzahl m, so bedeutet das, dass der Ausdruck atmod m für 0 \le t \le m-2 alle Werte aus \{1,\ldots,m-1\} (in scheinbar zufälliger Reihenfolge) annimmt (für die Schreibweise "mod" siehe Modulo (Rest)).

Wenn modulo m Primitivwurzeln existieren, dann existieren genau \varphi(\varphi(m)) modulo m inkongruente Primitivwurzeln. Jede dieser Primitivwurzeln ist modulo m kongruent zu einem Element der Menge:

\{a^n \mid 1 \le n \le \varphi(m),\ \operatorname{ggT}(n, \varphi(m))=1\}

wobei a eine beliebige Primitivwurzel modulo m ist.

[Bearbeiten] Beispiel

Sei zum Beispiel m = 7 eine Primzahl. Dann ist ( \mathbb{Z} /7\mathbb{Z} )^\times=\left\{1,2,3,4,5,6\right\} und \varphi(7)=6. Die Wertetabelle der diskreten Exponentiation der Zahlen 3 und 4 ist dann:

j 1 2 3 4 5 6
3jmod 7 3 2 6 4 5 1
4jmod 7 4 2 1 4 2 1

Es ist also \operatorname{ord}_7(3)=6 und \operatorname{ord}_7(4)=3. Damit ist 3 eine Primitivwurzel modulo 7, 4 hingegen nicht. In der Notation der Erzeuger ausgedrückt ist \langle3\rangle = \left\{3, 2, 6, 4, 5, 1\right\} = ( \mathbb{Z} /7\mathbb{Z} )^\times und \langle4\rangle = \left\{4, 2, 1\right\} \neq ( \mathbb{Z} /7\mathbb{Z} )^\times.


Die folgende Tabelle zeigt die Primitivwurzeln der Primzahlen bis 29.

m \varphi(\varphi(m)) Primitivwurzeln modulo m
2 1 1
3 1 2
5 2 2, 3
7 2 3, 5
11 4 2, 6, 7, 8
13 4 2, 6, 7, 11
17 8 3, 5, 6, 7, 10, 11, 12, 14
19 6 2, 3, 10, 13, 14, 15
23 10 5, 7, 10, 11, 14, 15, 17, 19, 20, 21
29 12 2, 3, 8, 10, 11, 14, 15, 18, 19, 21, 26, 27

[Bearbeiten] Existenz von Primitivwurzeln

Nach einem Satz von C. F. Gauß existieren genau dann Primitivwurzeln modulo m, wenn m gleich 1,2,4,pα,2pα mit einer ungeraden Primzahl p und einer natürlichen Zahl α ist.

[Bearbeiten] Anwendungsbeispiel

Die Primitivwurzeln fanden eine Anwendung im Diffie-Hellman-Schlüsselaustausch, einem 1976 veröffentlichten Verfahren der Kryptografie zum öffentlichen Schlüsselaustausch.

Es beruht auf der Tatsache, dass

  • es einfach ist, zu einer gegebenen Primzahl m, Primitivwurzel a und ganzer Zahl i ein b auszurechnen mit b = aimod m , aber
  • es aufwendig ist, für ein bekanntes b ein entsprechendes i zu finden.

Das zweite Problem wird auch als diskreter Logarithmus bezeichnet.

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu