Wavelet-Paket-Transformation
aus Wikipedia, der freien Enzyklopädie
Die Wavelet-Paket-Transformation ist eine Erweiterung der schnellen Wavelet-Transformation (FWT) und dient wie diese in der digitale Signalverarbeitung der Analyse und Kompression digitaler Signale. In der FWT wird ein zeitdiskretes Eingangssignal mit einer Abtastrate F mittels einer Wavelet-Filterbank (z.B. der Daubechies-Wavelets) in einen Tiefpasskanal L und einen Bandpasskanal H mit halber Abtastrate F/2 aufgespalten und dieses Vorgehen für den Tiefpasskanal rekursiv wiederholt. So entstehen im darauffolgenden Schritt aus dem Kanal L die Kanäle LL und LH mit Abtastrate F/4, aus dem Kanal LL im nächsten Schritt die Kanäle LLL und LLH und so weiter.
Bei der Wavelet-Paket-Transformation werden nun auch die Bandpasskanäle aufgespalten, so dass im zweiten Rekursionsschritt nicht nur LL und LH sondern auch die Kanäle HL und HH entstehen. Im dritten Schritt entstehen so 8 Teilkanäle, usw. Die Teilkanäle des Ergebnisses und der Zwischenschritte können in einem binären Baum angeordnet werden.
![]() |
Paketbaum mit Filter g für den L-Kanal und h für den H-Kanal |
Diese Transformation kann dazu dienen, aus einer 2-Kanal-DWT wie z.B. den Daubechies-Wavelets eine M-Kanal-DWT zu erhalten, wobei M eine Potenz von 2 ist, der Exponent wird Tiefe des Paket-Baums genannt. Dieses Verfahren wird in der Breitbanddatenübertragung als DWT-OFDM bzw. DWPT-OFDM als Alternative zur schnellen Fourier-Transformation in der FFT-OFDM angewandt.
Hat die zugrundeliegende Wavelet-Transformation eine Skalierungsfunktion φ mit Tiefpassfilter a(Z) (L-Kanal) und Bandpassfilter b(Z) (H-Kanal), so ergeben sich die Wavelets der Kanäle zu
wobei S der Operator der Verschiebung (shift) um 1 in Richtung wachsender x-Werte ist, d.h. (Sf)(x)=f(x-1). Potenzen von S sind dann Verschiebungen um den Exponenten der Potenz, Laurent-Polynome in S entsprechen den jeweiligen Linearkombinationen der verschobenen Funktionen.
Bis hier sind die Funktionen φ und ψ identisch mit den in der FWT auftretenden. Im zweiten Schritt ergeben sich neue Funktionen
Ist das Spektrum von φ(x)=ψLL(x) nahezu optimal auf das Basisband [0,1/2] beschränkt und sind a und b gute frequenzselektive digitale Filter für die sich 1-periodisch wiederholenden Intervalle [-1/4,1/4] bzw. [1/4,3/4], so wird das Spektrum von ψ(x)=ψLH(x) auf [1/2,1] konzentriert sein, das von ψLH(x) auf ([-1/2,1/2]∪[3/2,5/2])∩[1,3]∩[0,2]=[3/2,2], das von ψHH(x) auf ([1/2,3/2]∪[5/2,7/2])∩[1,3]∩[0,2]=[1,3/2], d.h. die Frequenzbänder der Kanäle sind in [0,2], jedes mit Breite 1/2, in der Reihenfolge LL, LH, HH, HL angeordnet.
Im dritten Schritt dann
usw.
In der folgenden Grafik wurden die Wavelets der dritten Stufe dargestellt, die sich aus dem Daubechies-12-Tap-Wavelet D12 ergeben, der Übersichtlichkeit halber ganzzahlig verschoben. Daneben die Amplituden der Fourier-Transformierten der einzelnen Wavelets. Man kann aus den Spektren im Amplitudenbereich oberhalb 0.7 die Aufteilung des Frequenzbandes [0,4] in die 8 Teilkanäle der Breite 1/2 mit der Reihenfolge LLL, HLL, HHL, LHL, LHH, HHH, HLH, LLH ablesen. Dies entspricht einer Variante eines Gray-Codes.
![]() |
![]() |
[Bearbeiten] Weblinks
- Wavelet Packet Modulation for Wireless Communications (pdf, englisch)