New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Wavelet-Paket-Transformation - Wikipedia

Wavelet-Paket-Transformation

aus Wikipedia, der freien Enzyklopädie

Die Wavelet-Paket-Transformation ist eine Erweiterung der schnellen Wavelet-Transformation (FWT) und dient wie diese in der digitale Signalverarbeitung der Analyse und Kompression digitaler Signale. In der FWT wird ein zeitdiskretes Eingangssignal mit einer Abtastrate F mittels einer Wavelet-Filterbank (z.B. der Daubechies-Wavelets) in einen Tiefpasskanal L und einen Bandpasskanal H mit halber Abtastrate F/2 aufgespalten und dieses Vorgehen für den Tiefpasskanal rekursiv wiederholt. So entstehen im darauffolgenden Schritt aus dem Kanal L die Kanäle LL und LH mit Abtastrate F/4, aus dem Kanal LL im nächsten Schritt die Kanäle LLL und LLH und so weiter.

Bei der Wavelet-Paket-Transformation werden nun auch die Bandpasskanäle aufgespalten, so dass im zweiten Rekursionsschritt nicht nur LL und LH sondern auch die Kanäle HL und HH entstehen. Im dritten Schritt entstehen so 8 Teilkanäle, usw. Die Teilkanäle des Ergebnisses und der Zwischenschritte können in einem binären Baum angeordnet werden.

Paketbaum mit Filter g für den L-Kanal und h für den H-Kanal

Diese Transformation kann dazu dienen, aus einer 2-Kanal-DWT wie z.B. den Daubechies-Wavelets eine M-Kanal-DWT zu erhalten, wobei M eine Potenz von 2 ist, der Exponent wird Tiefe des Paket-Baums genannt. Dieses Verfahren wird in der Breitbanddatenübertragung als DWT-OFDM bzw. DWPT-OFDM als Alternative zur schnellen Fourier-Transformation in der FFT-OFDM angewandt.

Hat die zugrundeliegende Wavelet-Transformation eine Skalierungsfunktion φ mit Tiefpassfilter a(Z) (L-Kanal) und Bandpassfilter b(Z) (H-Kanal), so ergeben sich die Wavelets der Kanäle zu

\begin{matrix} \psi_L(x/2):=&a(S)\phi(x)=\sum_n a_n\phi(x-n)=&\phi(x/2),\\ \psi_H(x/2):=&b(S)\phi(x)=\sum_n b_n\phi(x-n)=&\psi(x/2), \end{matrix}

wobei S der Operator der Verschiebung (shift) um 1 in Richtung wachsender x-Werte ist, d.h. (Sf)(x)=f(x-1). Potenzen von S sind dann Verschiebungen um den Exponenten der Potenz, Laurent-Polynome in S entsprechen den jeweiligen Linearkombinationen der verschobenen Funktionen.

Bis hier sind die Funktionen φ und ψ identisch mit den in der FWT auftretenden. Im zweiten Schritt ergeben sich neue Funktionen

\begin{matrix} \psi_{LL}(x/4):=&a(S^2)a(S)\phi(x)=&\phi(x/4),\\ \psi_{LH}(x/4):=&b(S^2)a(S)\phi(x)=&\psi(x/4),\\ \psi_{HL}(x/4):=&a(S^2)b(S)\phi(x),\\ \psi_{HH}(x/4):=&b(S^2)b(S)\phi(x). \end{matrix}

Ist das Spektrum von φ(x)=ψLL(x) nahezu optimal auf das Basisband [0,1/2] beschränkt und sind a und b gute frequenzselektive digitale Filter für die sich 1-periodisch wiederholenden Intervalle [-1/4,1/4] bzw. [1/4,3/4], so wird das Spektrum von ψ(x)=ψLH(x) auf [1/2,1] konzentriert sein, das von ψLH(x) auf ([-1/2,1/2]∪[3/2,5/2])∩[1,3]∩[0,2]=[3/2,2], das von ψHH(x) auf ([1/2,3/2]∪[5/2,7/2])∩[1,3]∩[0,2]=[1,3/2], d.h. die Frequenzbänder der Kanäle sind in [0,2], jedes mit Breite 1/2, in der Reihenfolge LL, LH, HH, HL angeordnet.

Im dritten Schritt dann

\begin{matrix} \psi_{LLL}(x/8):=&a(S^4)a(S^2)a(S)\phi(x)=&\phi(x/8),\\ \psi_{LLH}(x/8):=&b(S^4)a(S^2)a(S)\phi(x)=&\psi(x/8),\\ \psi_{LHL}(x/8):=&a(S^4)b(S^2)a(S)\phi(x),\\ \psi_{LHH}(x/8):=&b(S^4)b(S^2)a(S)\phi(x),\\ \psi_{HLL}(x/8):=&a(S^4)a(S^2)b(S)\phi(x),\\ \psi_{HLH}(x/8):=&b(S^4)a(S^2)b(S)\phi(x),\\ \psi_{HHL}(x/8):=&a(S^4)b(S^2)b(S)\phi(x),\\ \psi_{HHH}(x/8):=&b(S^4)b(S^2)b(S)\phi(x). \end{matrix}

usw.

In der folgenden Grafik wurden die Wavelets der dritten Stufe dargestellt, die sich aus dem Daubechies-12-Tap-Wavelet D12 ergeben, der Übersichtlichkeit halber ganzzahlig verschoben. Daneben die Amplituden der Fourier-Transformierten der einzelnen Wavelets. Man kann aus den Spektren im Amplitudenbereich oberhalb 0.7 die Aufteilung des Frequenzbandes [0,4] in die 8 Teilkanäle der Breite 1/2 mit der Reihenfolge LLL, HLL, HHL, LHL, LHH, HHH, HLH, LLH ablesen. Dies entspricht einer Variante eines Gray-Codes.

[Bearbeiten] Weblinks

Andere Sprachen

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu