Número primo
Na Galipedia, a wikipedia en galego.
Sistema numérico en matemáticas. | |
Elementais | |
i Unidade imaxinaria
|
|
Extensións dos números complexos | |
Bicomplexos |
|
Especiais | |
Nominais |
|
Outros importantes | |
Secuencias de enteiros |
|
Sistemas de numeración | |
|
Número primo é un número natural maior que 1 e que ten exactamente dous divisores positivos distintos: 1 e el mesmo. Se un número natural é maior que 1 e non é primo, dise que é composto. Por convención, os números 0 e 1 non son primos nin compostos.
O concepto de número primo é moi importante na teoría dos números. Un dos resultados da teoría dos números é o Teorema Fundamental da Aritmética, que afirma que calquera número enteiro positivo pode ser escrito univocamente como o produto de varios números primos (chamados factores primos). Ao proceso que recebe como argumento un número e devolve os seus factores primos chámase decomposición en factores primos. Antes do desenvolvemento do cálculo automático, a determinación dos factores primos era un proceso traballoso en extremo, mais a finais do século XVIII xa existían, grazas ao labor dalgúns matemáticos, entre os cales Anton Felkel e Jurix Batolomex Vega, extensas táboas abranxendo o intervalo desde a unidade ata algúns millóns.
Colocando os números primos en orde crecente, temos que os primeiros elementos son:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97...
Exemplos de decomposicións:
- 4 = 2 × 2
- 6 = 2 × 3
- 8 = 2 × 2 × 2
- 9 = 3 × 3
- 10 = 2 × 5
[editar] Teoremas dos números primos
Sábese que, á medida que avanzamos na secuencia dos números enteiros, os primos tórnanse cada vez máis raros. Isto levanta dúas cuestións:
- O conxunto dos números primos sería finito ou infinito?
- Dado un número natural n, cal é a proporción de números primos entre os números menores que n?
A resposta a primeira cuestión é que o conxunto dos primos é infinito. Podemos demostrar da seguinte forma:
Supoña , por absurdo , que o número de primos sexa finito e sexan p1,p2,p3,...,pn os primos.Sexa P o número tal que
P = onde
denota o produto.
Temos que P non é primo (por hipótese), logo existe un número primo q tal que . Mais obviamente
. Logo existe un novo número primo, o que é unha contradición.
A resposta para a segunda pregunta é que esa proporción é aproximadamente 1:ln(n), onde ln é o logaritmo natural.
[editar] Grupos e secuencias de números primos
Coñécense dous grupos de números primos:
do tipo:
- (4n+1) - pódense sempre escribir como (x2 + y2)
e
- (4n-1) - nunca se poden escribir como (x2 + y2)
Tratándose de números primos, é perigoso facer unha xeneralización apenas con base nunha observación, non solidamente comprobada matematicamente. Vexamos o exemplo:
31, 331, 3.331, 33.331, 333.331, 3.333.331 e 33.333.331 son primos
mais
333.333.331 non é: (333.333.331 = 17 x 19.607.843)
[editar] Ligazóns Externo+as
- As páxinas de primos -- http://www.utm.edu/research/primes/
- MacTutor history of prime numbers
- The "PRIMES is in P" FAQ
- The first 20,000 primes (through 224737) at Wikisource
- Lista dos maiores números probabelmente primos
- The prime puzzles
- The Prime Project xera un número primo cada vez que se accede á páxina
- Unha tradución ao inglés da demostración de Euclides da infinitude dos primos
- Primes de WIMS é un xenerador online de números primos.
- Prime Factorization Worksheet
- Prime Spiral pattern
- 12 digit primes Factores primos coñecidos de 12-díxitos de Googolplex
- [An Introduction to Analytic Number Theory, by Ilan Vardi and Cyril Banderier]