ギ酸
出典: フリー百科事典『ウィキペディア(Wikipedia)』
ギ酸 | |
---|---|
![]() ![]() |
|
一般情報 | |
IUPAC名 | メタン酸(系統名) ギ酸(許容慣用名) |
別名 | |
分子式 | CH2O2 |
分子量 | 46.03 g/mol |
組成式 | |
式量 | g/mol |
形状 | 無色液体 |
CAS登録番号 | 64-18-6 |
SMILES | O=COH |
性質 | |
密度と相 | 1.2196 g/cm3, 液体 |
相対蒸気密度 | 1.6 (空気 = 1) |
水への溶解度 | 自由に溶解する |
への溶解度 | g/100 mL ( ℃) |
への溶解度 | g/100 mL ( ℃) |
融点 | 8.40 ℃ |
沸点 | 100.75 ℃ |
昇華点 | ℃ |
pKa | 3.75 |
pKb | |
比旋光度 [α]D | |
比旋光度 [α]D | |
粘度 | |
屈折率 | |
出典 | ICSC Kis-net |
ギ酸(蟻酸、ぎさん、formic acid)は、低級のカルボン酸の1つ。化学式は HCOOH。IUPAC命名法ではメタン酸 (methanoic acid) が系統名である。−CHO基を持つため、アルデヒドの性質(還元性)も示す。工業的に作られており、水溶液が市販されている。加熱すると発火しやすい。
目次 |
[編集] 生成方法
酢酸生産時の副生成物としてギ酸が得られるが、それだけでは不足するため他の方法を用いたギ酸の生成も行われている。
メタノールと一酸化炭素を強塩基存在下で反応させると、ギ酸メチルが生成する。
- CH3OH + CO → HCOOCH3
工業的にはこの反応は高圧液相下で行われる。典型的な反応条件は80℃、40気圧でナトリウムメトキシドを用いるというものである。ギ酸メチルを加水分解するとギ酸が生成する。
- HCOOCH3 + H2O → HCOOH + CH3OH
しかしながらメチルエステルの加水分解を効率的に進行させるには大過剰の水が必要であるため、他の化合物を経由した加水分解も行われている。ギ酸メチルをアンモニアと反応させホルムアミドを生成後、ホルムアミドを硫酸で加水分解するというものである。
- HCOOCH3 + NH3 → HCONH2 + H2O
- HCONH2 + H2O + ½H2SO4 → HCOOH + ½(NH4)2SO4
この方法では硫酸アンモニウムが副生成物として生成してしまうという問題点がある。このため近年、製造業者はエネルギー効率向上の観点から、ギ酸メチルを直接加水分解した後の大過剰の水からギ酸を取り出す技術を開発している。例としてBASF社の、有機塩基を用いて抽出するという手法が挙げられる。
濃縮したいときは次のようにする。
- 水溶液を強く冷却し、ギ酸の結晶を析出させる。
- 精留塔で分離する。
- ギ酸プロピルを混ぜて蒸留すると、蒸留液は二層に分かれる。このうちギ酸プロピルの層を蒸留すると、純ギ酸が得られる。
[編集] 歴史
15世紀初頭には、錬金術師や自然主義者の一部は、エゾアカヤマアリの蟻塚から酸性の蒸気が出ていることを知っていた。1671年、イギリスの自然主義者であるジョン・レイ (John Ray) が、大量の死んだアリの蒸留によりギ酸を初めて単離し、「アリの酸 (formic acid)」と命名した。ジョセフ・ルイ・ゲイ=リュサックが、シアン化水素からのギ酸の合成に成功した。1855年、フランスのマルセラン・ベルテロが、今日行われている一酸化炭素からの合成を行った。
[編集] 化学的性質
ギ酸は水や多くの極性溶媒、炭化水素に溶解する。炭化水素に溶解している場合や気体の場合、水素結合によりカルボン酸の二量体を形成している。この結合の存在により、気体は理想気体の性質から大きく外れたものとなる。液体及び固体状態では効率的な水素結合のネットワークを形成している。
ギ酸はカルボン酸であるが、通常の条件下では酸塩化物や酸無水物を形成しないという特徴を持つ。これらを生成させようとした実験のほとんどは一酸化炭素が生成するという結果に終わった。その後−78℃でフッ化ホルミルをギ酸ナトリウムと反応させると酸無水物が、−60℃で1-ホルムイミダゾールのクロロメタン溶液と塩酸を反応させると酸塩化物が生成するという報告がなされた[1]。加熱するとギ酸は一酸化炭素と水に分解する。
カルボン酸としては独特の性質を持ち、アルケンと反応する。ギ酸とアルケンが反応するとギ酸エステルを生成する。しかし硫酸やフッ化水素などの酸が存在するとコッホ反応 (Koch reaction) によりギ酸がアルケンに付加し、炭素鎖が伸長したカルボン酸が生成する。
ギ酸水溶液は一価カルボン酸の中で最も強い酸性を持ち、手に触れると痛みが出る。また、濃硫酸または三酸化硫黄を加えて熱すると一酸化炭素を生じる。
- HCOOH → CO + H2O
- HCOOH + SO3 → CO + H2SO4
- CH2O + [O] → HCOOH
[編集] 生物とギ酸
ギ酸というとアリを思い浮かべる人が多いが、すべてのアリがギ酸を持つわけではない。ハチの仲間であるアリは、ほとんどの種で尾端に毒針を持っており、これで巣の防衛や獲物の攻撃を行う。しかし、ヤマアリ亜科とカタアリ亜科のアリの場合はこの毒針を失っており、水鉄砲のように毒性のある毒液を外敵に吹きかけて巣を防衛したり、獲物を狩ったりする。ヤマアリ亜科の場合にはこの毒液の主成分がギ酸であり、ギ酸の腐食性と浸透性によって外敵の皮膚を損傷し、毒液を体内に浸透させる。北半球の温帯地方、特にその北部で特に繁栄していてヒトの生活圏で個体数も多いヤマアリ属 Formica spp. やケアリ属 Lasius spp. のアリがヤマアリ亜科に属すため、この地域でアリの巣を刺激した時にギ酸による攻撃を受けることが多い。
ギ酸はヤマアリ亜科のアリから防御液を吹きかけられたり、イラクサの棘に刺されたときの刺激の一因となっている(ただし、イラクサの毒作用はヒスタミンとアセチルコリンが主成分とする説が有力になってきている)。
メタノールを誤飲すると失明・死亡するがそれはメタノールの酸化により生じるホルムアルデヒドのせいではなく、それがさらに酸化されて生じるギ酸が代謝されにくいことによる。すなわち、ギ酸によるアシドーシスによることが判明している。
[編集] 利用
主な利用法としては家畜用飼料(サイレージ)の防腐剤や抗菌剤といったものが挙げられる。干し草や貯蔵牧草などに噴霧すると腐食を抑え、栄養価を保持するなどの特徴から冬季の牛の飼料などに広く用いられる。養鶏業ではサルモネラ菌除去のため時々飼料に加えられる。
養蜂業ではミツバチヘギイタダニ等のダニ殺虫剤として用いる場合がある。
また繊維工業や皮なめしの場でも用いられることがある。ある種のギ酸エステルは香料となる。
有機合成化学では、しばしば水素化物イオン源として用いられる。エシュバイラー・クラーク反応やロイカート・ヴァラッハ反応は良い例である。
研究室内では、硫酸と混合することで一酸化炭素源として用いられる。ホルミル源としても用いられることがあり、トルエン中でメチルアニリンからN-メチルホルムアニリドを生成する反応が例として挙げられる。[2]
ギ酸を燃料とするギ酸燃料電池も開発中である。
[編集] 安全性
液体のギ酸溶液や蒸気は皮膚や目に対して有害である。特に目に対して回復不能な障害を与えてしまう場合がある。吸入すると肺水腫などの障害を与えることがある。ギ酸の蒸気中には一酸化炭素も含まれていることが多いため、大量のギ酸の蒸気を扱う際には注意しなければならない。
動物実験により変異原性が確認されており、慢性的な暴露により肝臓や腎臓に悪影響を及ぼすと考えられている。またアレルギー源としての可能性も考えられている。
水溶液の危険性は濃度に依存する。
[編集] 法的規制
日本では毒物及び劇物取締法により劇物に、消防法により危険物第4類に、また安衛法による文書交付対象物質に指定されている。
[編集] 参考文献
- ^ Cohen, J. B. Practical Organic Chemistry; MacMillan, 1930.
- ^ Fieser, L. F.; Jones, J. E. "N-methylformanilide". Org. Synth., Coll. Vol. 3, p.590 (1955); Vol. 20, p.66 (1940). オンライン版