Cookie Policy Terms and Conditions مصفوفة - ويكيبيديا، الموسوعة الحرة

مصفوفة

من ويكيبيديا، الموسوعة الحرة

يمكن فهم [المصفوفة] عامة على أنها دالة رياضية خطية تحول مجموعة بداية أي إنطلاق (مجال) إلى مجموعة وصول أو نهاية (مدى). مجموعة الإنطلاق و الوصول يمكن أن تكون متكونة من أعداد صحيحة أو عقدية أو أشعة من الأعداد كما يمكن أن تكون هاتين المجموعتان متكونة بدورها من دالات رياضية أو أشعة دالات رياضية. و يمكن أن نرمز للمصفوفة بمعقفين يكتب بينهما عناصر المصفوفة كما هو مبين أسفله:
\begin{bmatrix}{a}_{11}&{a}_{12}&\cdots&{a}_{1n}\\{a}_{21}&{a}_{22}&\cdots&{a}_{2n}\\\vdots & \ddots & \ddots & \vdots\\{a}_{m1}&{a}_{m2}&\cdots&{a}_{mn}\end{bmatrix}
حيث aij يمكن أن تكون أعدادا صحيحة أو مركبة كما يمكن أن تكون دالات رياضية.

فهرس

[تحرير] مثال على تحويل من مجموعة إنطلاق إلى مجموعة وصول

لنعتبر مثلا الشعاع التالي:
V = \begin{bmatrix}{s}_{1}\\{s}_{2}\\{s}_{3}\\{s}_{4}\end{bmatrix} \in {R}^{4}
و المصفوفة التالية: A = \begin{bmatrix} {a}_{11}&{a}_{12}&{a}_{13}&{a}_{14}\\{a}_{21}&{a}_{22}&{a}_{23}&{a}_{24}\end{bmatrix}


عملية تحويل الشعاع تتم على نحو النحو التالي:
X = A*V = \begin{bmatrix} {a}_{11}&{a}_{12}&{a}_{13}&{a}_{14}\\{a}_{21}&{a}_{22}&{a}_{23}&{a}_{24}\end{bmatrix}\begin{bmatrix}{s}_{1}\\{s}_{2}\\{s}_{3}\\{s}_{4}\end{bmatrix} = \begin{bmatrix}{a}_{11}{s}_{1}+{a}_{12}{s}_{2}+{a}_{13}{s}_{3}+{a}_{14}{a}_{14}\\{a}_{21}{s}_{1}+{a}_{22}{s}_{2}+{a}_{23}{s}_{3}+{a}_{24}{s}_{4}\end{bmatrix}

وهكذا نكون قد حولنا شعاعا V ينتمي إلى R4 إلى شعاع X ينتمي إلى ال R2. أما عامة إذا كانت المصفوفة تحتوي على عدد m من الأسطر و n من الأعمدة فإنها تحول مجموعة الإنطلاق المكونة من أشعة تنتمي إلى ال Kn إلى مجموعة الوصول المتكونة من أشعة تنتمي إلى ال Km.
كما يمكن إعتبار المصفوفات نوعا خاصا من التنسورات ألا وهي التنسورات من الدرجة الثانية

[تحرير] العمليات على المصفوفات

[تحرير] ضرب مصفوفة في مصفوفة

يتم ضرب مصفوفة في أخرى ولكن بتواجد الشرط الآتي : أن يكون عدد الأعمدة بالمصفوفة الأولى يساوي عدد الصفوف بالمصفوفة الثانية. يتم ضرب المصفوفات كالتالي : الصف الأول بالعمود الأول ثم الصف الثاني بالعمود الثاني .......إلخ،وينتج من ضرب الصف الأول بالعمود الأول العدد الأول بالمصفوفة الناتجة. ونضرب العدد الأول بالصف بالعدد الأول بالعمود. جداء مصفوفتين  : إن جدا ء مصفوفتين هو مجموع جداء كل عنصر واقع في سطر المصفوفة الأولى مع العنصر الموافق له في عمود المصفوفة الثانية كما هو موضح في الشكل الموالي :







إدا كان                          و         فإن  :
                               
                                                                   

حيث:


ملاحظة: إن الشرط الأساسي لضرب مصفوفتين هو تساوي أسطر الأولى مع أعمدة الثانية. مثال:


 نستنتج أن:                                                                        

الضرب في المصفوفات غير تبديلي .


خواص الضرب على المصفوفات : 1) الضرب توزيعي أي : A(B+C)=A.B+A.C 2) الضرب تجميعي : 3) إدا كان :A.B=0 قد يكون

[تحرير] ضرب مصفوفة بعدد

يمكن ضرب أي مصفوفة بعدد حقيقيا كا ن أو عقديا, نقوم بكل بساطة بضرب كل عنصر من المصفوفة في هدا العدد.

[تحرير] حساب المحدد

حساب قيمة محدد الدرجة الثالثة: هناك طريقتان لحساب محدد مصفوفة من الدرجة الثالثة

الطريقة الأولى: 1. نكرر كتابة العمود الأول والثاني على الترتيب بعد العمود الثالث . 2. نكون مجموع حاصل ضرب العناصر الواقعة على الخطوط المستقيمة المتجهة من اليسار إلى اليمين ونطرح منه مجموع حاصل ضرب العناصر الواقعة على الخطوط المستقيمة المتجهة من اليمين إلى اليسار.

توضيح

a11 a12 a13 a11 a12

              a 21 a22  a23  a21  a22       
                  a31  a32  a33  a31  a32


الطريقة الثانية:





ملحوظة: الطريقة الأولى لا تصلح للتطبيق على محددات المصفوفات حيث بينما الطريقة الثانية يمكن تعميمها على محدد أي مصفوفة مع الاستفادة من خواص المحددات السابقة للتقليل من العمليات الحسابية.


الفك عن طريق المتعاملات: إذا كانت مصفوفة من الدرجة نفرض أن هي المصفوفة الناتجة من المصفوفة A بعد حذف الصف رقمi والعمود رقم j في لمصفوفة A المحدد تسمى المحددة الصغرى للعنصر ويعرف متعامل العنصر بأنه

ولأي مصفوفة مربعة يتحقق الآتي مجموع حاصل ضرب عناصر أي صف أو عمود في متعاملاتها يعطي قيمة المحدد أي انه إذا كانت مصفوفة من الدرجة فان 1. ويسمى مفكوك المحدد حول الصف رقم i

2. 3. ويسمى مفكوك الصف حول العمود


بالنسبة للمصفوفات التي تكون من الدرجة الرابعة أو أكثر يستحسن تحويلها إلى مصفوفة مثلثية لتبسيط حساب المحدد و بالتالي يصبح يساوي جداء عناصر القطر الرئيسي للمصفوفة المثلثية الجديدة

[تحرير] حساب القيمة المطلقة لمصفوفة

هذه المقالة عبارة عن بذرة تحتاج للنمو والتحسين؛ فساهم في إثرائها بالمشاركة في تحريرها.

يتم حساب القيمه المطلقه للمحدده اعتمادا على قيمه المحدده

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu