Centralizator i normalizator
Z Wikipedii
Centralizator (centrum), normalizator – w teorii grup specjalne podgrupy danej grupy mające szerokie zastosowaniu w jej badaniu.
Spis treści |
[edytuj] Centralizator
Niech . Centralizatorem elementu x nazywamy podgrupę
.
Centralizator elementu zawiera więc wszystkie elementy przemienne z danym.
Powyższą konstrukcję można uogólnić do dowolnego podzbioru G, nie koniecznie będącego podgrupą.
Centralizatorem zbioru nazywamy grupę
.
Grupa ta jest przemienna z każdym z elementów zbioru H.
[edytuj] Centrum
Centrum grupy – szczególny przypadek centralizatora:
- Z(G) = CG(G).
Centrum jest więc podgrupą elementów, które są przemienne z każdym elementem grupy G, mamy zatem .
Stąd o centralizatorze elementu x można myśleć jako o największej (w sensie inkluzji) podgrupie zawierającej x w swoim centrum, Z(H).
[edytuj] Normalizator
Dopełnieniem konceptu centralizatora jest tzw. normalizator zbioru .
Normalizatorem H w G jest podgrupa
.
Normalizator swoją nazwę zawdzięcza faktowi, że jeśli , to NG(H) jest największą podgrupą G mającą H jako swoją podgrupę normalną.
[edytuj] Działanie grupy na zbiorze
Niech będzie dowolną podgrupą. Rozpatrzmy działanie grupy
grupy G na zbiorze warstw G / H zadane wzorem
. Wówczas
jest podgrupą normalną G. Jest to największa ze względu na zawieranie podgrupa normalna zawarta w H.
Jeśli , to
[edytuj] Oznaczenia
W oznaczeniach centralizatora i normalizatora, o ile nie prowadzi to do nieporozumień, można pominąć indeks oznaczający grupę względem której rozpatruje się centralizator lub normalizator danego elementu, czy zbioru. W grupie G mamy więc oraz
dla dowolnego zbioru
.
[edytuj] Własności
Niech G,G1,G2 będą grupami, :
- Niech
.
, co zachodzi wtedy i tylko wtedy, gdy a i b komutują ze sobą.
- Jeśli G = {a}, to N(S) = C(S) = C(a).
- Jeśli G jest abelowa, to C(H) = G oraz N(H) = G,
- grupa G jest abelowa
.
- grupa G jest abelowa
- C(H) jest zawsze podgrupą normalną N(H),
- Z(G) jest podgrupą normalną G.
- Jeśli grupa ilorazowa G / Z(G) jest cykliczna, to G jest abelowa.
- Jeśli G jest grupą nieabelową, to jej indeks względem Z(G) jest większy od 3.
- Jeśli
, to Z(GX) = (Z(G))X.
[edytuj] Uwagi
Jeżeli , wtedy grupa ilorazowa N(H) / C(H) jest izomorficzna z podgrupą
, grupą automorfizmów H.
Jeżeli NG(G) = G, to G / Z(G) jest izomorficzna z , podgrupą
zawierającą wszystkie automorfizmy wewnętrzne G.
Jeżeli , to homomorfizm
taki, że
, pozwala na opisanie N(H) oraz C(H) w terminach działania grupy
na grupie G:
jest stabilizatorem H w
,
jest podgrupą punktów stałych H.
[edytuj] Bibliografia
- A. Bojanowska, P. Traczyk, Algebra I, Skrypt WMIM, 2005.
- Cz. Bagiński, Wstęp do teorii grup, SCRIPT, 2005, ISBN 83-904564-9-4