New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Problem sekretarki - Wikipedia, wolna encyklopedia

Problem sekretarki

Z Wikipedii

W statystyce, teorii decyzji i teorii gier, problem sekretarki (znany także jako problem wyboru najlepszego obiektu lub problem łowcy posagu) to zagadnienie optymalnej selekcji najlepszej propozycji ze skończonego zbioru takich propozycji, prezentowanych sekwencyjnie w losowej kolejności. Przyjmuje się przy tym, że propozycje są istotnie różne.

Klasyczny przykład takiego problemu to zagadnienie obsady stanowiska sekretarki. Na ogłoszenie o wolnym stanowisku sekretarki zgłosiło się N kandydatek. Z każdą z nich przeprowadza się wywiad oceniając jej przydatność i natychmiast po skończeniu wywiadu kandydatkę można bądź przyjąć (wówczas proces selekcji kończy się), bądź też odrzucić i przeprowadzić wywiad z następną. Nie wolno przy tym zmieniać decyzji w stosunku do odrzuconych kandydatek. Inny niefrasobliwy przykład, to wybór kandydatki na żonę z listy kandydatek przedstawianych w losowej kolejności. Celem jest maksymalizacja prawdopodobieństwa wyboru najlepszej kandydatki.

Przedstwiony problem ma bardzo proste rozwiązanie optymalne: istnieje liczba r, ze zbioru 1\leq r<n, taka, że optymalnie jest analizować pierwszych r kandydatek i je odrzucać. Następnie, z pozostałych nr kandydatek, wybrać pierwszą, która jest lepsza od dotychczas przeglądanych. Metodami poszukiwania maksimum ciągu liczbowego można wyznaczyć optymalną wartość progu r. Optymalna wartość r przy n dążącym do nieskończoności jest równa 1 / e. Inaczej mówiąc, można pokazać, że r\approx n/e \approx 0.368n, gdzie e jest podstawą logarytmów naturalnych (stałą Eulera). Przy takiej strategii prawdopodobieństwo wyboru najlepszej kandydatki, przy n dążącym do nieskończoności, dąży do 1 / e (około 36.8%).

Przedstawiony problem ma wiele wariantów. Ważniejsze modyfikacje to:

  1. mamy prawo wybrać dwa obiekty
  2. problem, gdy liczba możliwych obiektów, z których dokonujemy wyboru jest losowa
  3. znacząca liczba kandydatek jest nierozróżnialna
  4. można powracać do odrzuconych obiektów
  5. celem jest wybór najlepszego lub drugiego w klasyfikacji

[edytuj] Optymalne wyznaczanie progu r

Załóżmy, że najlepsza kandydatka jest na pozycji a. Jeśli a < r, to proponowana strategia jej nie wybierze i w takim przypadku nie dokonamy wyboru najlepszej kandydatki. Jeśli a > r, to przyjęty próg dzieli kandydatki na trzy grupy, [1,r], [r,a] oraz [a,n]. Jeśli nasza strategia ma przynieść sukces, to druga według naszego kryterium kandydatka w przedziale [1,a] powinna być przed progiem r, tj. w przedziale [1,r]. Prawdopodobieństwo takiego zdarzenia wynosi \frac{r}{a}. Zatem, całkowita szansa na sukces wynosi \frac{r}{a} pod warunkiem, że a > r.

Przy dużych liczbach kandydatek n prawdopodobieństwo wyboru najlepszej jest bliskie całce po możliwych położeniach a

P(\mathrm{success}) = \frac{1}{n}\sum_{a=r}^n \frac{r}{a} \approx \frac{1}{n}\int\limits_r^n \frac{r}{a}da = -\frac{r}{n}\log\left(\frac{r}{n}\right)

Przyrównując pochodną po \frac{r}{n} powyższego wyrażenia do zera otrzymujemy, że wartość \frac{r}{n} = \frac{1}{e} maksymalizuje prawdopodobieństwo wyboru najlepszej kandydatki.

[edytuj] Literatura

  • R. Bartoszynski. "Reguły zatrzymywania", Wiadom. Mat. 18, 41-53, 1974.
  • T. S. Ferguson. "Who solved the secretary problem?", Statistical Science, volume 4, pp.282-296, 1989.
W innych językach

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu