Động cơ tuốc bin phản lực
Bách khoa toàn thư mở Wikipedia
Chất lượng (dịch thuật) của bài/đoạn dưới đây không được hoàn hảo. Xin hãy cẩn thận khi đọc bài vì một số thông tin của bài có thể không đáng tin cậy, xin xem lý do ở trang thảo luận. Nếu bạn có khả năng sửa, xin mời bạn tham gia hiệu đính lại bài này. Người đặt thông báo chú ý: Xin hãy đảm bảo rằng trang thảo luận của bài có nêu ra lý do tại sao chất lượng dịch không tốt. |
Động cơ turbin phản lực là kiểu đơn giản nhất và cổ nhất của động cơ phản lực nói chung. Hai kỹ sư, Frank Whittle ở Anh Quốc và Hans von Ohain ở Đức, đã độc lập phát triển khái niệm về loại động cơ này từ cuối thập kỷ 1930. Máy bay chiến đấu, được trang bị động cơ phản lực, lần đầu tiên được đưa vào sử dụng năm 1944, giai đoạn cuối Chiến tranh thế giới thứ hai.
Một động cơ turbin phản lực thường được dùng làm động cơ đẩy cho máy bay. Không khí được đưa vào bên trong những máy nén quay thông qua cửa hút khí và được nén tới áp suất cao trước khi đi vào buồng đốt. Ở đây không khí trộn với nhiên liệu và được đốt cháy. Quá trình cháy này khiến nhiệt độ khí tăng lên rất nhiều. Các sản phẩm cháy nhiệt độ cao thoát ra khỏi buồng đốt và chạy qua turbin để làm quay máy nén. Dù quá trình này làm giảm nhiệt độ và áp suất khí thoát ra khỏi turbin, thì những tham số của chúng vẫn vượt cao hơn so với điều kiện bên ngoài. Luồng khí bên trong turbin thoát ra ngoài thông qua ống thoát khí, tạo ra một lực đẩy phản lực ngược chiều. Nếu tốc độ phản lực vượt quá tốc độ bay, máy bay sẽ có được lực đẩy tiến về phía trước.
Dù các động cơ phản lực nói chung có thiết kế đơn giản (hầu như không có bộ phận chuyển động) nhưng chúng không thể hoạt động ở tốc độ bay thấp.
Mục lục |
[sửa] Cửa hút gió
Phía trước máy nén là cửa hút gió (hay cửa vào), nó được thiết kế để hút được càng nhiều không khí càng tốt. Sau khi qua cửa hút gió, không khí đi vào hệ thống nén.
[sửa] Máy nén
Máy nén quay ở tốc độ rất cao, làm tăng năng lượng cho dòng khí, cùng lúc nén khí lại khiến nó tăng áp suất và nhiệt độ.
Đối với hầu hết các máy bay dùng động cơ phản lực turbin, không khí nén được lấy từ máy nén trong nhiều giai đoạn để phục vụ các mục đích khác như điều hòa không khí/điều hòa áp suất, chống đóng băng cửa hút khí, và nhiều việc khác.
Có nhiều kiểu máy nén được dùng cho máy bay động cơ phản lực turbin và turbin khí nói chung: trục, ly tâm, trục-ly tâm, ly tâm đôi, vân vân.
Các máy nén giai đoạn đầu có tỷ lệ nén tổng thể ở mức thấp 5:1 (tương tự mức của đa số các động cơ phụ và máy bay động cơ turbin phản lực loại nhỏ ngày nay). Những cải tiến khí độc lực sau này cho phép các máy bay dùng động cơ turbin phản lực ngày nay đạt tỷ lệ nén tổng thể ở mức 15:1 hay cao hơn. So sánh với các động cơ phản lực cánh quạt đẩy) dân dụng hiện nay có tỷ lệ nén tổng thể lên tới 44:1 hay cao hơn.
Sau khi đi ra khỏi bộ phận nén, không khí nén vào trong buồng đốt.
[sửa] Buồng đốt
Quá trình đốt bên trong buồng đốt khác rất nhiều so với quá trình đốt trong động cơ piston. Trong một động cơ piston khí cháy bị hạn chế ở khối lượng nhỏ, khi nhiên liệu cháy, áp suất tăng lên đột ngột. Trong một động cơ turbin phản lực, hỗn hợp không khí và nhiên liệu, không hạn chế, đi qua buồng đốt. Khi hỗn hợp cháy, nhiệt độ của nó tăng đột ngột, áp lực trên thực tế giảm đi vài phần trăm.
Nói chi tiết, hỗn hợp không khí-nhiên liệu phải được ngăn lại ở mức hầu như dừng hẳn để đảm bảo tồn tại một ngọn lửa cháy ổn định, quá trình này diễn ra ngay đầu buồng đốt. Phần đuôi của ngọn lửa này cũng có thể phun ra ở phần cuối động cơ. Điều đó đảm bảo rằng phần còn lại của nhiên liệu được đốt cháy khi lửa trở nên nóng hơn và khi nó phun ra ngoài, và vì bị hạn chế bởi hình dáng buồng đốt dòng không khí nóng chạy ra phía sau. Vì thế gây ra sụt áp suất, và nó là lý do tại sao khí nở ra chạy ra phía sau chứ không phải ra phía trước động cơ. Chưa tới 25% không khí tham gia vào quá trình cháy, ỏ một số loại động cơ tỷ lệ này chỉ đạt mức 12%, phần còn lại đóng vai trò dự trữ để hấp thu nhiệt tỏa ra từ quá trình đốt nhiên liệu.
Một khác biệt nữa giữa động cơ piston và động cơ phản lực là nhiệt độ đỉnh điểm trong động cơ piston chỉ diễn ra trong khoảnh khắc, trong một phần nhỏ của toàn bộ quá trình. Buồng đốt trong một động cơ phản lực luôn đạt mức nhiệt độ đỉnh và có thể làm chảy lớp vỏ ngoài. Vì thế chỉ một lõi ở giữa của dòng khí được trộn với đủ nhiên liệu đảm bảo cháy thực sự. Vỏ ngoài được thiết kế hình dạng để luôn có một lớp không khí sạch không cháy nằm giữa bề mặt kim loại và nhân giữa. Lớp không khí không cháy này được trộn với các khí cháy làm nhiệt độ giảm xuống ở mức turbin có thể chịu đựng được.
[sửa] Turbin
Khí nóng ra khỏi buồng đốt được hướng chạy qua các lá turbin làm quay turbin. Các lá turbin có có cấu tạo tương tự như các lá máy nén nhưng chỉ có hai hoặc ba hàng và quay ngược chiều so với máy nén. Một phần năng lượng quay của turbin được tách ra để cung cấp cho các phụ kiện như bơm nhiên liệu, dầu, thủy lực... Trong các động cơ phản lực, hầu như hai phần ba năng lượng có được từ đốt cháy nhiên liệu cung cấp cho máy nén để nén khí cho động cơ.
[sửa] Ống thoát khí
Sau turbin, khí cháy thoát ra ngoài qua ống thoát khí tạo ra một tốc độ phản lực lớn. Ở ống thoát khí hội tụ, các ống dẫn hẹp dần dẫn tới miệng thoát. Tỷ lệ áp lực ống thoát khí của một động cơ phản lực thường đủ lớn để khiến khí đạt tốc độ Mach 1.0.
Tuy nhiên, nếu có lắp một ống thoát khí kiểu hội tụ-phân rã "de Laval", vùng phân rã cho phép khí nóng đạt tới tốc độ siêu âm ngay bên trong chính ống thoát khí. Cách này có hiệu suất lực đẩy hơi lớn hơn sử dụng ống thoát khí hội tụ. Tuy nhiên, nó lại làm tăng trọng lượng và độ phức tạp của động cơ.
[sửa] Lực đẩy thực
Dưới đây là một phương trình gần đúng để tính toán lực đẩy thực của một động cơ phản lực:
khi:
khối lượng dòng khí vào
tốc độ phản lực phát triển hết cỡ (in the exhaust plume)
tốc độ bay của máy bay
Trong khi thể hiện tổng lực đẩy của ống thoát khí, thể hiện the ram drag của cửa hút gió. Rõ ràng tốc độ phản lực phải vượt quá tốc độ bay nếu có một lực đẩy thực vào thân máy bay.
[sửa] Tỷ lệ lực đẩy trên năng lượng
Một động cơ turbin phản lực đơn giản tạo ra lực đẩy gần: 2.5 pounds lực trên sức ngựa (15 mN/W). Dưới đây là một phương trình gần đúng để tính toán lực đẩy thực của một động cơ phản lực:
khi:
khối lượng dòng khí vào
tốc độ phản lực phát triển hết cỡ (in the exhaust plume)
tốc độ bay của máy bay
Trong khi thể hiện tổng lực đẩy của ống thoát khí, thể hiện the ram drag của cửa hút gió. Rõ ràng tốc độ phản lực phải vượt quá tốc độ bay MỚI có một lực đẩy thực vào thân máy bay
[sửa] Những cải tiến chu trình hoạt động
Increasing the overall pressure ratio of the compression system raises the combustor entry temperature. Therefore, at a fixed fuel flow and airflow, there is an increase in turbine inlet temperature. Although the higher temperature rise across the compression system, implies a larger temperature drop over the turbine system, the nozzle temperature is unaffected, because the same amount of heat is being added to the system. There is, however, a rise in nozzle pressure, because overall pressure ratio increases faster than the turbine expansion ratio. Consequently, net thrust increases, whilst specific fuel consumption (fuel flow/net thrust) decreases.
So turbojets can be made more fuel efficient by raising overall pressure ratio and turbine inlet temperature in unison. However, better turbine materials and/or improved vane/blade cooling are required to cope with increases in both turbine inlet temperature and compressor delivery temperature. Increasing the latter requires better compressor materials.
[sửa] Những thiết kế ban đầu
Early German engines had serious problems controlling the turbine inlet temperature. Their early engines averaged only ten hours of operation before failing—often with chunks of metal flying out the back of the engine when the turbine overheated. British engines tended to fare better due to better metals. The Americans had the best materials because of their reliance on turbosupercharging in high altitude bombers of World War II. For a time some US jet engines included the ability to inject water into the engine to cool the compressed flow before combustion, usually during takeoff. The water would tend to prevent complete combustion and as a result the engine ran cooler again, but the planes would takeoff leaving a huge plume of smoke.
Today these problems are much better handled, but temperature still limits airspeeds in supersonic flight. At the very highest speeds, the compression of the intake air raises the temperature to the point that the compressor blades will melt. At lower speeds, better materials have increased the critical temperature, and automatic fuel management controls have made it nearly impossible to overheat the engine.
[sửa] Nguồn
Constructing A Turbocharger Turbojet Engine. Edwin H. Springer. Turbojet Technologies 2001.
[sửa] Xem thêm
- Động cơ phản lực cánh quạt đẩy (turbofan)
- Động cơ tuabin phản lực cánh quạt (turboprop)
- Động cơ phản lực (jet engine)
- Máy bay phản lực (ram-jet)
- Động cơ tuabin cánh quạt (propfan)