New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
網 (數學) - Wikipedia

網 (數學)

维基百科,自由的百科全书

This article is about nets in topological spaces and not about ε-nets in metric spaces.

拓撲學數學的相關領域裡,序列的廣義化,用來統一極限不同的概念和將其廣義至任意的拓撲空間。 Limits of nets accomplish for all topological spaces what limits of sequences accomplish for first-countable spaces such as metric spaces.

一個序列通常以為全序集合自然數做為索引。網廣義化了此一概念,以把索引集合上的排序關係削弱成有向集合

網於西元1922年首次由摩爾與H. L. Smith提出。另一相關的概念-濾子則於西元1937年由亨利·嘉當所發展。

目录

[编辑] 定義

X是一拓撲空間,X中的是指一由某一有向集合AX函數

A是一有向集合,通常會把由AX的網寫成(xα),以用來表示A的元素α映射到X的元素xα上。通常用≥來標記由A所給定的二元關係。

[编辑] 例子

自然數是一有向集合且序列是定義域為自然數的函數時,每一序列都會是一個網。

另一重要例子如下。給定拓撲空間上的一點x,讓Nx標記為所有包含x鄰域的集合。然後,Nx會是個有向集合,其方向由內含的顛倒給定,即STS包含在T裡時。對在Nx內的S,讓xS標記為S內的一點。然後,xS便會是一個網。當S對≥而言為增加時,網內的點sS會被限制在x的遞減鄰域內,直觀地說,這使得xS在某些意義上時必須趨向x。下面將把這一極限的概念講述的更清楚。

[编辑] 網的極限

若(xα)是一由有向集合AX的網,且若YX的子集,則我們說(xα)是最終於 Y若存在一在A內的α能使得任一在A內會有β ≥ α的β,其點xβ會在Y內。

若(xα)是拓撲空間X內的一網,且xX的一元素,我們說這一個網收斂至 x或稱有極限 x,並寫做

lim xα = x

若且唯若

對任一x鄰域U,(xα)會最終於U

直觀地說,這表示xα會很靠近x,若α取得夠大。

注意,上述所舉的在一點x的鄰域系統上的網根據定義是會確實地收斂至x了。

[编辑] 網的極限的例子

  • 變數的函數極限:limxc f(x)。這裡,我們根據距c的距離在集合R\{c}內取向。
  • 黎曼和的網的極限,用來黎曼積分的定義上。在此例子中,其有向集合為積分區間分割的集合,以內含以其偏序。相似的事情也被用來黎曼-斯蒂爾吉斯積分的定義上。

[编辑] 追加定義

DE為有向集合,且h為一由DE的函數,則h被稱為'共尾,若對任一在E內的e,總存在一在D內的d會使得當qD的元素且qd時,h(q) ≥ e。換句地話,其值域h(D)會共尾E

DE為有向集合,h為由EE的共尾函數,且φ是以E為基的集合X的網,則φoh稱做φ的子網。所有的子網都是這種類型,依其定義。

若φ是一以有向集合D為底的集合X的網,且AX的子集,則φ頻繁地在 A,當對於任一在D內的α,存在一在D的β且β ≥ α以使φ(β)在A內。

集合X的網φ稱做普遍的,若對於任一X的子集A,φ會最終於A或會最終於X-A

[编辑] 性質

Virtually all concepts of topology can be rephrased in the language of nets and limits. This may be useful to guide the intuition since the notion of limit of a net is very similar to that of limit of a sequence, which is widely used in the theory of metric spaces.

A function f : XY between topological spaces is continuous at the point x if and only if for every net (xα) with

lim xα = x

we have

lim f(xα) = f(x).

Note that this theorem is in general not true if we replace "net" by "sequence". We have to allow for more directed sets than just the natural numbers if X is not first-countable.

In general, a net in a space X can have more than one limit, but if X is a Hausdorff space, the limit of a net, if it exists, is unique. Conversely, if X is not Hausdorff, then there exists a net on X with two distinct limits. Thus the uniqueness of the limit is equivalent to the Hausdorff condition on the space, and indeed this may be taken as the definition. Note that this result depends on the directedness condition; a set indexed by a general preorder or partial order may have distinct limit points even in a Hausdorff space.

If U is a subset of X, then x is in the closure of U if and only if there exists a net (xα) with limit x and such that xα is in U for all α. In particular, U is closed if and only if, whenever (xα) is a net with elements in U and limit x, then x is in U.

A net has a limit if and only if all of its subnets have limits. In that case, every limit of the net is also a limit of every subnet.

A space X is compact if and only if every net (xα) in X has a subnet with a limit in X. This can be seen as a generalization of the Bolzano-Weierstrass theorem and Heine-Borel theorem.

In a metric space or uniform space, one can speak of Cauchy nets in much the same way as Cauchy sequences. The concept even generalises to Cauchy spaces.

[编辑] 另見

濾子的理論也提供了在一般拓撲空間內有關收斂的定義。

[编辑] 參考

E. H. Moore and H. L. Smith (1922). A General Theory of Limits. American Journal of Mathematics 44 (2), 102–121.

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu