Contact tension
From Wikipedia, the free encyclopedia
In physics, contact tension (also known as the contact electromotive force, the contact potential, or the Volta effect), is an obsolete scientific theory that attempted to explain how electricity is generated in an electric battery or, as it was then called, the Voltaic pile. [1]
[edit] History
The theory held that static electricity was generated by means of contact between dissimilar materials, and was in close agreement with the principles of static electricity as then understood. It was eventually replaced by the current theory of electrochemistry, namely, that electricity is generated by the action of chemistry and the exchange of electrons between atoms making up the battery. An important fact leading to the rejection of the theory of contact tension was the observation that corrosion, that is, the chemical degradation of the battery, seemed unavoidable with its use, and that the more electricity was drawn from the battery, the faster the corrosion proceeded.
In fact, the Volta effect does correspond to a weak electric potential developed by the contact of different metals. This effect was first discovered by Alessandro Volta, and can be measured using a capacitance electroscope comprised of different metals. However, the actual effect is not sufficiently strong to account for the action of electric batteries.
A number of high voltage dry piles were invented between the early 1800s and the 1830s in an attempt to determine the answer to this question, and specifically to support Volta’s hypothesis of contact tension. The Oxford Electric Bell is one example.
[edit] References
- ^ Willem Hackmann, "The Enigma of Volta's "Contact Tension" and the Development of the "Dry Pile"", appearing in Nuova Voltiana: Studies on Volta and His Times Volume 3 (Fabio Bevilacqua; Lucio Frenonese (Editors)), (2000) pp. 103-119