New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Kondensatormikrofon - Wikipedia

Kondensatormikrofon

aus Wikipedia, der freien Enzyklopädie

Kondensatormikrofon
Kondensatormikrofon
1. eintreffender Schall
2. Membran
3. Gegenelektrode
4. Spannungsversorgung
5. Hochpassfilter
6. resultierendes Signal

Das Kondensatormikrofon (auch Condenser) ist ein elektroakustischer Wandler, der Schalldruckimpulse in entsprechende elektrische Spannungsimpulse wandelt. Er arbeitet nach dem physikalischen Prinzip des Kondensators. Da die Membranauslenkung und nicht die Membrangeschwindigkeit zum Signal führt, ist das Kondensatormikrofon technisch betrachtet ein Elongationsempfänger.

Kondensatormikrofone kommen in den verschiedensten Erscheinungsformen vor, da mit diesem Begriff nur das Wandlerprinzip bezeichnet wird. Der Begriff hat sich aber im Umgang als Mikrofon -Klasse etabliert, da klangliche Eigenschaften mit dem Prinzip der Wandlung eng verknüpft sind.


Prinzip

Beim Kondensatormikrofon ist eine wenige tausendstel Millimeter dicke, elektrisch leitfähige Membran dicht vor einer - aus akustischen Gründen gelochten - Metallplatte elektrisch isoliert angebracht. Sobald eine elektrische Spannung angelegt wird (Phantomspeisung), entsteht zwischen der Membran und der Platte ein Potenzialgefälle. Technisch betrachtet entspricht diese Anordnung einem Plattenkondensator, der eine messbare elektrische Kapazität besitzt. Die Kapazität C dies Kondensators ist abhängig von der Plattenfläche A und dem Abstand d der Kondensatorplatten (ε ist das Produkt aus der materialspezifischen Dielektrizitätszahl εr und der Dielektrizitätskonstante ε0 des Vakuums):

C=\varepsilon { {A} \over {d} }

Eintreffender Schall bringt die Membran zum Schwingen, wodurch sich der Abstand d der beiden Kondensatorfolien und damit auch die Kapazität des Kondensators verändert.

Diese Kapazitätsschwankungen führen zu Spannungsschwankungen und resultieren in einem elektrischen AM-Signal. Dieses System wird als Niederfrequenz-(NF-)Kondensatormikrofon bezeichnet. Bei einer alternativen Bauart, dem HF-(Hochfrequenz-)Kondensatormikrofon, wird die variable Kapazität zur Verstimmung eines HF-Schwingkreises benutzt. Dabei entsteht ein FM-Signal, das noch im Mikrofon demoduliert wird.

Eine Impedanzanpassung durch einen Mikrofonverstärker verstärkt die sehr geringen Signalströme. Um elektromagnetische Einstreuungen im Mikrofonkabel auszuschließen, wird eine Signalsymmetrierung durch einen Übertrager oder durch eine elektrische Symmetrierstufe mit Transistoren (Differenzverstärker) vorgenommen.

Da die Membran eine sehr geringe Masse besitzt, folgt sie Luftschwingungen besonders präzise, was in einem guten Impulsverhalten dieses Mikrofontyps sowie in brillanten Höhen resultiert. Das Impulsverhalten ist umso besser, je kleiner der Membrandurchmesser ist. Kondensatorkapseln sind sowohl als Druckmikrofon wie auch als Druckgradientenmikrofon gebräuchlich. Manche Kondensatormikrofone haben eine umschaltbare Richtcharakteristik. Ermöglicht wird dies durch die Kombination zweier Druckgradientenmikrofone. Die Membranen stehen dabei „Rücken an Rücken“ und können in der Höhe der Versorgungsspannung und in der Polung umgeschaltet werden (Doppelgradientenmikrofon)[1] [2].

[Bearbeiten] Phantomspeisung

Um das Potentialgefälle zwischen den Kondensatorplatten zu erreichen, ist eine Spannungsquelle notwendig. Auch ein elektronischer Impedanzwandler benötigt eine Spannungsversorgung. Üblicherweise nutzt man die Phantomspeisung des Mikrofonvorverstärkers oder des Mischpults. Der Spannungs-Pluspol beträgt meistens 48 Volt und liegt zur Strombegrenzung und Entkopplung über je einen Widerstand von 6,8 kΩ an den Signalleitungen Hot (XLR Pin 2) und Cold(XLR Pin 3) an. Den Spannungs-Minuspol bildet Masse (XLR Pin 1). Zwischen den Anschlüssen Pin 2 und Pin 3 ist kein Spannungsunterschied messbar, daher die Bezeichnung „Phantomspeisung“ [3]. Siehe auch: Symmetrische Signalübertragung.

Batteriespeisung

Im mobilen Bereich, etwa bei Verwendung unsymmetrischer Eingänge eines mobilen DAT- Recorders, erfolgt die Vorspannung durch ein Speiseteil (Batteriespeisung). Kondensatormikrofone, die für den mobilen Einsatz gebaut worden sind, haben oft ein solches Speiseteil im Griffstück integriert. Dabei werden die 48 Volt Gleichspannung mittels Transformation aus den 1,5 Volt einer handelsüblichen Batterie gewonnen. Die Qualität der so gewonnenen Gleichspannung wirkt sich direkt auf die Mikrofonsignalqualität aus. Der Energieverbrauch eines Kondensatormikrofons ist sehr gering, eine Batterie hält viele Stunden vor.

Eine alternative Bauart des Kondensatormikrofons, welche ohne Kapselvorspannung auskommt, ist das Elektret- Kondensatormikrofon.

[Bearbeiten] Klein- und Großmembrankondensatormikrofon

Kleinmembranmikrofon

Als Kleinmembranmikrofon gelten nach branchenüblicher Bezeichnung all jene Mikrofone, deren Mikrofonkapsel einen Membrandurchmesser von kleiner als 1 Zoll, entsprechend 2,54 cm aufweisen. Typisch bei Kondensatormikrofonen sind Durchmesser von 1/2 Zoll (1,3 cm) und 1/4 Zoll (0,64 cm).

Der Kapseldurchmesser beeinflusst maßgeblich den Klang und bestimmt damit den Anwendungszweck des Mikrofons mit. Je kleiner der Kapseldurchmesser ist, desto höhere Frequenzen können gemäß ihrer Einfallsrichtung und Schallstärke korrekt aufgenommen und übertragen werden, da sich das Mikrofon dem punktförmigen Ideal annähert und die wirksame Membranfläche maximal in der Größenordnung der Wellenlänge der höchsten hörbaren Schallfrequenzen liegt.

Kleinmembranmikrofone haben daher einen recht gleichförmigen Verlauf der Empfindlichkeit in Abhängigkeit des Schalleinfallswinkels und übertragen bis weit über 15 kHz einigermaßen sauber. Dagegen kommt es bei Großmembranmikrofonen, z. B. zu ausgeprägten Partialschwingungen und Wechselwirkungen der Membran mit kurzwelligen Schallwellen, sodass im oberen Frequenzbereich ab etwa 10 kHz ein oft ungleichförmiger Frequenzverlauf entsteht. Mitverantwortlich sind hierbei auch die Größe und Geometrie des gesamten Mikrofons. Kleinmembranmikrofone stellen ein geringes Hindernis im Schallfeld dar und wirken damit weniger verändernd, was z. B. auch in Stereo-Mikrofonanordnungen sehr zum Tragen kommt, wenn zwei Mikrofone in unmittelbarer Nähe platziert werden müssen.

Grundsätzlich gilt: Je kleiner die Kapsel, desto neutraler und präziser ist das Klangbild. Daher werden bei Musikproduktionen und Übertragungen, bei denen es auf klangliche Authentizität ankommt, nahezu ausschließlich Kleinmembranmikrofone eingesetzt.

Andererseits verliert man bei kleineren Kapseln an Kondensatorfläche, wodurch die Empfindlichkeit, also das Vermögen, einen bestimmten Schalldruck in eine möglichst große Spannung umzuwandeln, sinkt und bei festem Grundrauschen nachgeschalteter Verstärker, der effektive Rauschabstand verschlechtert wird.

Durch die Bauart weisen Kleinmembranmikrofone auch eine oft benötigte gute Rückwärtsdämpfung, also Abschattung von hinten kommender Schallwellen auf. Typische Rückwärts-Dämpfungswerte sind bis zu 35 dB für Nieren-Kleinmembranmikrofone, während nur bis zu maximal 20 dB Dämpfung von hinten für Großmembranen üblich sind.

Großmembranmikrofon

Großmembran-Kondensator-Mikrofon mit Spinne
Großmembran-Kondensator-Mikrofon mit Spinne

Bei Kondensatormikrofonen ist es bis zum heutigen Tag in der Branche üblich, alle Kapseln mit Membrandurchmessern von größer oder gleich 1 Zoll = 2,54 cm als Großmembranmikrofon zu bezeichnen, auch wenn es manche junge Firmen gibt, die es mit dieser geschichtlich gewachsenen Begriffsbestimmung nicht so ernst nehmen und auch Membranen mit nur 0,75 Zoll = 1,9 cm Durchmesser (die damit eigentlich Kleinmembranmikrofone sind) schon als Großmembran zu benennen, um sie besser vermarkten zu können. Real ist heute auch immer noch so, dass die historisch bedingte Baugröße der Großmembranmikrofone bei vielen Anwendern pauschal auf positive Resonanz stößt und vielfach kaufentscheidend ist.

Psychologisch sitzt die Annahme falsch fest, dass ein großes Mikrofon einen großen Klang haben müsse. Tätsächlich sind jedoch Kleinmembranmikrofone in der Klangneutralität technisch überlegen und sind daher in vielen Anwendungen bei Tonproduktion vorzuziehen.

Der Klang wird durch den Kapseldurchmesser und seine Störungen im Schallfeld maßgeblich beeinflusst und damit der Anwendungszweck des Mikrofons mitbestimmt. Je größer der Kapseldurchmesser wird, desto schlechter können höhere Frequenzen noch sauber übertragen werden, da ein Membrandurchmesser von 2 cm und mehr bereits in der Größenordnung der Wellenlänge der noch hörbaren hohen Schallwellen liegt, wodurch es zu unerwünschten Effekten kommt.

Ein weiteres typisches Merkmal von Großmembranmikrofonen ist es, dass sie für das Schallfeld ein großes mechanisches Hindernis darstellen und durch die Platzierung eines dermaßen großen Fremdkörpers die Schallsituation in unmittelbarer Umgebung des Mikrofons stark verzerrt wird. Einfluss nimmt hier auch das oft großvolumig gestaltete Gehäuse bei Großmembranmikrofonen.

Da die Richtcharakteristik aufgrund der großen Abmessungen sehr frequenzabhängig und auch weniger gut ausgeprägt ist, entsteht bei diesem Mikrofontyp typischerweise eine deutliche hörbare Klangfärbung, die für jedes einzelne Exemplar charakteristisch ist, während sich Kleinmembranmikrofone untereinander klanglich deutlich ähnlicher sind.

Vergleich zwischen Klein- und Großmembran-Mikrofonen

De facto besitzen Großmembranmikrofone eine typische obere Grenzfrequenz von etwa 12 kHz, während Kleinmembranmikrofone problemlos bis 40 kHz sauber übertragen und auch Impulsen besser folgen können. Moderne Großmembranen bestehen aus extrem dünnen (unter 2 µm) und leichten Materialien und können somit hohe Frequenzen etwas besser wiedergeben als ältere Modelle.

Je kleiner die Mikrofonkapsel, desto neutraler und präziser ist das Klangbild. In Aufnahmesituationen werden Großmembranmikrofone daher oft eingesetzt, um bestimmte Instrumente oder Stimmen zu färben, z. B. um Solostimmen, vor allem Gesang, hervorzuheben. Bei Übertragungen hingegen, wo es auf gute Rückwärts-Dämpfungswerte der Mikrofone ankommt, erweisen sich Großmembranmikrofone ebenfalls als unterlegen: Typische Werte für ein Nieren-Großmembranmikrofon sind 20 dB, während bei einem Kleinmembranmikrofon eine hohe Dämpfung bis zu 35 dB keine Seltenheit sind.

Große Kapseln haben einen Vorteil: Mit größerer Kondensatorfläche steigt die Empfindlichkeit des Mikrofons. Bei einem gegebenen Schalldruck erzeugt daher eine Großmembrankapsel mehr Modulationsspannung, wodurch bei gleichem Grundrauschen nachfolgender elektrischer Verstärker der effektive Rauschabstand verbessert wird. Damit lassen sich mit Großmembrankapseln grundsätzlich rauscharme Mikrofone bauen. Daher finden sich in der Produktpalette einiger fernöstlicher Anbieter optisch imposante Riesenmikrofone mit relativ guten Rauschwerten.

kleine Membran große Membran
Eigenrauschen höher niedriger
Empfindlichkeit niedriger höher
Schalldruck-Verkraftung höher geringer
Frequenzbereich breiter enger
Schallfeldeinfluss gering stark
Dynamikbereich höher geringer

[Bearbeiten] Quellen

  1. Michael Dickreiter, Handbuch der Tonstudiotechnik, 6. Auflage 1997, Band 1, Seite 182
  2. Thomas Görne, Mikrofone in Theorie und Praxis, 2. Auflage 1996, Seite 87
  3. Michael Dickreiter, Handbuch der Tonstudiotechnik, 6. Auflage 1997, Band 1, Seite 174

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu