New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Präzision - Wikipedia

Präzision

aus Wikipedia, der freien Enzyklopädie

Der Titel dieses Artikels ist mehrdeutig. Weitere Bedeutungen finden sich unter Präzision (Begriffsklärung).

Präzision und Genauigkeit sind im Messwesen zwei Kriterien zur Beurteilung einer Messung.

Die Präzision (engl. precision) ist ein Kriterium der Qualität eines Messverfahren. Sie wird daher auch als innere Genauigkeit einer Messung bezeichnet, veraltet auch Wiederholgenauigkeit.

Im Gegensatz dazu bedeutet Genauigkeit (engl. accuracy) zweierlei:

  • Eine äußere Genauigkeit: Sie kommt in der Streuung der Messungen zum Ausdruck, wenn sie unter verschiedenen äußeren Umständen wiederholt werden.
  • Eine absolute Genauigkeit, das ist der Grad der Übereinstimmung zwischen angezeigtem und wahrem Wert.

Man kann sich den Unterschied zwischen Genauigkeit und Präzision wie folgt vorstellen: Jemand spielt Billard und trifft immer nur ins Loch, obwohl er eine Kugel treffen will. Dann hat er eine gute Präzision, aber eine schlechte Genauigkeit.

Inhaltsverzeichnis

[Bearbeiten] Begriffe

[Bearbeiten] Präzision

Die Bedeutung des Begriffs Präzision wird unter DIN 55350-13 mit dem Hinweis auf die Bedeutungsgleichheit zum ehemals Wiederholgenauigkeit genannten Merkmal definiert.

Definition nach DIN
Die Präzision beschreibt, wie klein die maximalen Abweichungen voneinander unabhängiger Ermittlungsergebnisse werden, welche gewonnen wurden, indem der Prüfer ein festgelegtes Ermittlungsverfahren mehrfach unter vorgegebenen Bedingungen anwandte. Die Formulierung impliziert, dass hohe Präzision durch niedrige Absolut- und Relativwerte ausgedrückt wird. Die DIN weist zudem explizit darauf hin, dass ein Ermittlungsverfahren umso präziser arbeitet, je kleiner die „zufälligen Ergebnisabweichungen“ des Verfahrens sind.

Der Begriff „Wiederholgenauigkeit“ soll im Bereich der Normung nicht mehr verwendet werden. Allerdings wird nicht nur in älterer Fachliteratur, sondern auch in neuen Texten häufig die Wiederholgenauigkeit als Qualitätsmerkmal von Messgeräten und auch ganzen Produktionsmaschinen quantifiziert und belegt den Messgerätefehler.

[Bearbeiten] Äußere Genauigkeit

Die äussere Genauigkeit ist der Anteil am Messfehler, der nicht Teil des Messgerätefehlers (der Präzison der Messvorrichtung) ist.

[Bearbeiten] Absolute Genauigkeit

In der DIN EN 60051 wird die Genauigkeit eines Messgerätes definiert als

„ Grad der Übereinstimmung zwischen angezeigtem und richtigem Wert. Die Genauigkeit […] ist durch die Grenzen der Eigenabweichung und die Grenzen der Einflusseffekte bestimmt.“

In diesem Zusammenhang dient sie der Definition der Genauigkeitsklasse.

[Bearbeiten] Anwendung

Details zum Interpretationsspielraum der Unabhängigkeit (von Ermittlungsergebnissen), der Festlegung (des Verfahrens) und der Vorgaben (an Bedingungen) schränken Anwender des Begriffs Präzision nur in sinnvollem Maß ein. Daraus ergeben sich zwei Hauptgebiete der Verwendung von Präzision als Qualitätsmerkmal:

  • Kalibriermaschinen
  • Robotik

[Bearbeiten] Kalibriermaschinen

Im Vergleich zur Absolutgenauigkeit eines Messgerätes spielt die Präzision zwar eine zunächst untergeordnete Rolle in der Bewertung der Qualität des Geräts. Solange es möglich ist, ein genaueres Messverfahren – als das in seiner Qualität zu bewertende – zum unmittelbaren Vergleich heranzuziehen, wird man in der Regel eine Kalibrierung durchführen, um die Qualität des Gerätes absolut anzugeben. Das bedeutet kalibrieren: Eine Messvorichtung an einem Besseren messen (siehe: Normal).

Eine Messvorrichtung kann ein Messgerät kalibrieren, wenn seine absolute Genauigkeit im gesamten Messbereich wenigstens um eine Größenordnung besser ist, als die des Prüflings.

Die jeweils zum Stand der Technik genauesten Geräte können selber nicht kalibriert werden, da ein zu diesem Zweck benötigtes, deutlich genaueres Messgerät ja nicht existiert. Daher kann diesen Messgeräten mit der jeweils höchsten technisch erreichbaren Genauigkeit keine Quantifizierung ihres größten, absoluten Messfehlers zugeordnet werden.

Allerdings gelingt es mit der Ermittlung der Präzision in diesen Fällen, trotzdem wertvolle Aussagen über die Zuverlässigkeit der Ergebnisse solcher Maschinen zu gewinnen. Wird mehrmals hintereinander (unabhängige Ermittlungsergebnisse) dieselbe Messaufgabe (Verfahren festgelegt und Bedingungen vorgegeben) ausgeführt, können der jeweils einander entsprechenden Abweichungen dieser unabhängigen Ermittlungsergebnisse nach einem vorgegebenen Schema verrechnet werden. Das Ergebnis dieser Prozedur ist die Präzision der neuen Kalibriermaschine.

Für kalibrierbare Geräte, also solche mit weniger hohem Präzisionsniveau, stellt die Messung der Wiederholgenauigkeit eine Chance zur Verbesserung dar. Ein Hersteller solcher Messgeräte kann daraus etwas über systematische Fehler seiner Konstruktion lernen und in die Weiterentwicklung einfließen lassen. Die Wiederholgenauigkeit wird vor allem bei Drehgebern, Winkel- und Längenmessgeräten hoher Präzision angegeben.

[Bearbeiten] Beispiel: Eichnormal

Für primäre Kalibriergeräte selbst allerdings spielt die Wiederholgenauigkeit eine wesentliche Rolle, da sie selbst Eichnormale darstellen und daher gar nicht (oder nur in wenigen Ausnahmefällen) kalibrierbar sind. Zur Ermittlung der Wiederholgenauigkeit wird der Messbereich mehrmals hintereinander unter möglichst gleichen Bedingungen durchlaufen. Die so entstehenden Messdiagramme werden nun miteinander verglichen. Um derartige „Vergleichsmessungen mit sich selbst“ deutlich von absoluten Kalibrierungen abzugrenzen, ist der Begriff der „Wiederholgenauigkeit“ – im Sinne der Präzision – unverzichtbar vor allem im Bereich der Meßsysteme höchster Präzision und höchster Absolutgenauigkeit. Die Wiederholgenauigkeit kann besser sein, als die Absolutgenauigkeit. Aber die Absolutgenauigkeit kann zum Zeitpunkt der Qualitätsfeststellung unmessbar sein im Rahmen des technischen Entwicklungsstandes. Der Unterschied rührt vor allem daher, dass für prinzipiell sehr gut funktionierende Messgeräte die einzelnen Messergebnisse meist als Gaussverteilungen um den tatsächlichen, physikalischen Wert symmetrisch herumgestreut sind. In besonderen Fällen jedoch können systematische Fehler eines Messgerätes die absoluten Messfehler in Teilbereichen des gesamten Messbereichs konzentrieren, während die übrigen Bereiche mit sehr viel höherer Genauigkeit messen. Liegen derartige, systematische Fehler vor, die sich aus den Grenzen der technischen Realisierbarkeit ergeben, wie es bei Messgeräten zur Kalibrierung typisch ist, dann können zwei aufeinander folgende Messreihen nahezu identische Diagramme liefern, welche aber absolut betrachtet typische Fehler in jeweils denselben Spektralbereichen besitzen.

Wenn es überhaupt keine Möglichkeit gibt, einem Kalibriergerät durch etwas Besseres Messfehler nachzuweisen, dann ist die Wiederholgenauigkeit zunächst der einzige Hinweis für eine wenigstens grobe Schätzung dafür, wie gut das Messverfahren oder die Messmethode sein könnte.

Die bei Eichnormalen relevanten Aspekte der Präzision werden an Messmaschinen der PTB besonders gut erkennbar: Von grosser Bedeutung ist eine zusätzlichen Kontrolle aller Ermittlungsergebnisse eines Kalibriergerätes durch Vergleich mit den entsprechenden Ermittlungsergebnissen wenigstens einer nicht baugleichen Präzisionsmaschine für dasselbe Einsatzgebiet. [1]

[Bearbeiten] Robotik

In der industriellen Fertigung werden überwiegend automatische Produktionsanlagen eingesetzt, deren Wert sich offenkundig daraus ergibt, dass sie unter vorgegebenen Bedingungen (Produktionshalle, Materialien, Formen, …) möglichst oft und schnell hintereinander (Unabhängigkeit) ein und dieselbe Produktionsaufgabe möglichst identisch erfüllen. Dazu sind Produktionsanlagen mit vielen Messgeräten – insbesondere für Längen und Winkel – ausgestattet.

Die Präzision der einzelnen Messgeräte, die dazu dienen, Informationen über den Bearbeitungsraum in eine CNC-verrechenbare Form zu bringen, kann sich bei gelungener Konstruktion der gesamten Anlage auf diese vererben. Um das Gesamtergebnis zu bewerten, wird die Präzision einer kompletten Produktionsanlage genau so ermittelt, wie die Präzision einer Kalibriermaschine.

[Bearbeiten] Beispiel: Linearachse einer Bearbeitungsmaschine

Wiederholgenauigkeit beschreibt im Kontext einer Linearachse einer automatischen Produktionsanlage die Reproduzierbarkeit eines Messwertes für die Position in dieser Achse unter gleichen Bedingungen für die Ermittelung dieses Wertes.

Sei die Produktionsanlage eine Bearbeitungsmaschine mit drei Linearachsen X, Y und Z. Die Präzision der X-Achse kann gemessen werden, indem die Positionen angefahren werden, an denen die Y- und Z-Achse während der Ermittlung festgehalten werden sollen. Dann werden die festgelegten Rahmenbedingungen (Temperatur, Schmierzustand, …) eingestellt und das Verfahren (definiert durch Angaben zum Beginn der Messstrecke, zum Messweg, zur Anfahrrichtung, zur Verfahrgeschwindigkeit, …) wird mehrmals hintereinander durchlaufen. Die Ermittlungsergebnisse werden schließlich nach DIN verrechnet. Da es sich bei diesem Beispiel um eine Positionieraufgabe handelt, ergibt sich für die Präzision ein Wert in der physikalischen Maßeinheit Meter, aufgrund der Standards zur Genauigkeit von Produktionsanlagen angegeben in Mikrometer[2]

Oft hat allerdings eine Relativangabe mehr Aussagekraft. Diese gewinnt man im Beispiel dadurch, dass man die ermittelte, absolute Wiederholgenauigkeit durch den jeweils durchlaufenen Messweg teilt. Die Angabe dieser prozentualen Präzision erlaubt in gewissen Maßen den Vergleich sogar recht unterschiedlicher Messgeräte.

[Bearbeiten] Problematik von Präzisionsangaben

Da die Wiederholgenauigkeit von Geräten auch mit systematischen Konstruktionsfehlern nach der Definition nahezu beliebig hoch sein kann, ohne dass daraus unmittelbar Aussagen über die Qualität in der absoluten Genauigkeit abgeleitet werden können, sind Angaben darüber stets kritisch zu prüfen. Nur wenn die Genauigkeit eines Gerätes an sich unzweifelhaft zum Ausdruck kommt, liefert die Angabe der Präzision ein willkommenes und wichtiges Kriterium bei der Entscheidung über die Eignung des Gerätes für die zu lösende Aufgabe.

Siehe auch: Qualitätsmanagement – die geräteabhängige Präzision ist Teil jeder Qualitätskontrolle

[Bearbeiten] Literatur

[Bearbeiten] Einzelnachweise

  1. Erste internationale Bewährungsprobe für das Hydrodynamische Prüffeld, Forschungsnachrichten der Abteilung 1, PTB. 22.12.2004
  2. Genauigkeit bei Antriebssystemen. In: drivesets.de, Fachwissen Mechatronik. Systech GmbH. 23.08.2006 – illustriert anschaulich und ausführlich die Zusammenhänge rund um die Präzision einer Maschinenachse
Andere Sprachen

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu