Vulkan
aus Wikipedia, der freien Enzyklopädie
Ein Vulkan ist eine geologische Struktur, die entsteht, wenn Magma (Gesteinsschmelze) bis an die Oberfläche eines Planeten (z.B. der Erde) aufsteigt. Alle Begleiterscheinungen, die mit dem Aufstieg und Austritt der glutflüssigen Gesteinsschmelze verbunden sind, bezeichnet man als Vulkanismus.
Der Begriff "Vulkan" leitet sich von der italienischen Insel Vulcano ab. Diese ist eine der Liparischen Inseln im Tyrrhenischen Meer. In der römischen Mythologie galt diese Insel als die Schmiede des Vulcanus, dem römischen Gott des Feuers.
In einer Tiefe ab 100 km, in der Temperaturen zwischen 1000 und 1300 Grad Celsius herrschen, schmelzen Gesteine zu zähplastischem Magma, das sich in großen, tropfenförmigen Magmaherden in 2 bis 50 km Tiefe sammelt. Wenn der Druck zu groß wird, steigt das Magma über Spalten und Klüfte der Lithosphäre auf. Magma, das auf diese Weise an die Erdoberfläche gelangt, wird als Lava bezeichnet.
Bei einem Vulkanausbruch werden nicht nur glutflüssige, sondern auch feste oder gasförmige Stoffe freigesetzt (Vulkanismus). Die meisten Vulkane haben annähernd die Form eines Kegels, dessen Hangneigung von der Zähigkeit der Lava abhängt. Die Gestalt kann aber auch unregelmäßig sein oder eine kuppelförmige Aufwölbung bilden.
Inhaltsverzeichnis |
Vulkantypen und Bezeichnungen
Vulkane kann man nach ihrer äußeren Form und nach der Art ihres Magmenzufuhrsystems einigermaßen unterteilen.
- Unterteilung nach der äußeren Form:
- Schicht-Vulkane (auch Strato-Vulkane genannt)
- Schild-Vulkane
- Schlacken- und Aschenkegel
Etwa 90 Prozent aller aktiven und 95 % aller Vulkane auf der Erde insgesamt sind Schicht-Vulkane.
- Unterteilung nach der Art des Magmenzufuhrsystems:
Eine besondere Form ist der Supervulkan.
Vulkane kann man auch nach ihrer Aktivität einordnen in
- aktive Vulkane (aktiver Vulkanismus)
- inaktive Vulkane (kein aktiver Vulkanismus, Voraussetzungen für erneute Aktivität sind jedoch gegeben)
- erloschene Vulkane (durch fehlende Magmazufuhr keine Aktivität mehr möglich)
Der durch die vulkanische Aktivität entstandene Berg wird je nach seiner Form Vulkankegel oder Vulkandom genannt, und die Öffnung, aus der Lava aus der Tiefe aufsteigt, heißt Vulkanschlot. Bricht ein Schlot über einer oberflächennahen Magmakammer zusammen und bildet sich eine große Öffnung, wird diese als Caldera bezeichnet.
Magmatypen
Eine andere Möglichkeit, Vulkane zu klassifizieren, ist, sie nach dem Typ des Magmas zu beschreiben, das sowohl die entstehende Form des Vulkans als auch das Ausbruchsverhalten entscheidend bestimmt:
Zusammenfassend kann man sagen, dass "graue Vulkane" "Schichtvulkane" bilden, während "rote Vulkane" "Schildvulkane" hervorbringen.
Viele Vulkane folgen allerdings nicht einem "reinen" Ausbruchsmuster, sondern zeigen variierendes Verhalten entweder während einer Eruption oder während der Millionen Jahre ihrer Aktivität. Ein Beispiel dafür ist der Ätna auf Sizilien.
Verteilung von Vulkanen
Weltweit gibt es etwa 1900 Vulkane, die als aktiv betrachtet werden. Ihre Verteilung kann man mit Hilfe der Erkenntnisse der Plattentektonik verstehen:
- Vulkane der Spreizungszonen liegen mit wenigen Ausnahmen auf dem Meeresgrund, wo die Erdplatten auseinanderdriften. Das dort vorkommende Magma ist basaltisch. Hierzu gehören hauptsächlich rote Vulkane oder Schildvulkane.
- Vulkane der Subduktionszonen sind die sichtbarsten Vulkane. Sie treten auf, wo Erdplatten aufeinander treffen und die eine Erdplatte unter die andere geschoben wird. Das abtauchende (oft SiO2-reiche) Gestein wird in der Tiefe geschmolzen und steigt, da es eine geringere Dichte hat, nach oben, wo es zu Eruptionen kommt. Hierzu rechnet man hauptsächlich graue Vulkane oder Schichtvulkane.
- Vulkane über „Hot Spots“ (auch Plume oder Plutone genannt) sind selten, da es weltweit zurzeit nur etwa 40 eindeutig bestimmte „Hot Spots“ gibt. Ein „Hot Spot“ ist ein über geologische Zeiträume als nahezu ortsfest anzusehender Aufschmelzungsbereich im Erdmantel unter der Lithosphäre. Die Lithosphärenplatten schieben sich durch plattentektonische Mechanismen, während langer Zeiträume über einen „Hot Spot“ hinweg. Es bilden sich perlenschnurartig hintereinander neue Vulkane, so als würden sie sich durch die Kruste hindurchschweißen. Bekanntestes Beispiel sind die Hawaii-Inseln: die Hauptinsel Hawai’i, die als jüngste Vulkaninsel über dem „Hot Spot“ liegt, ist erst 400.000 Jahre alt, während die älteste der 6 Vulkaninseln Kauai im Nordwesten bereits vor etwa 5,1 Millionen Jahren entstanden ist. Beispiele für diese seltene Art des Vulkanismus in Europa finden sich in der Ost- und Westeifel (Vulkaneifel), dem Siebengebirge und in der Auvergne.
Vorhersage von Vulkanausbrüchen
Zu diesem Abschnitt siehe auch: Vulkanobservatorium
Ob ein Vulkan endgültig erloschen ist oder vielleicht wieder aktiv werden kann, interessiert besonders die Menschen, die in der Umgebung eines Vulkans leben. In jedem Fall hat ein Vulkanausbruch weitreichende Konsequenzen, denn über das persönliche Schicksal hinaus werden Infrastruktur und Wirtschaft der betroffenen Region nachhaltig beeinflusst. Daher ist es das vorrangige Forschungsziel, Vulkanausbrüche möglichst präzise vorhersagen zu können. Fehlprognosen wären allein unter Kostengesichtspunkten verheerend (Evakuierung Tausender von Menschen, Stilllegung des gesamten Wirtschaftslebens u.v.m.).
Trotz gewisser Gemeinsamkeiten gleicht kein Vulkan in seinem Ausbruchsverhalten dem anderen. Demnach sind Beobachtungen über Ruhephasen oder seismische Aktivitäten eines Vulkans kaum auf einen anderen übertragbar.
Bei der Überwachung von Vulkanen stehen generell fünf Überwachungsmethoden zur Verfügung, die je nach Vulkan-Charakteristik in unterschiedlicher Kombination eingesetzt werden: die Aufzeichnung seismischer Aktivität, die geodätische Überwachung der Topographie, die Messung gravimetrischer und magnetometrischer Veränderungen, die Erfassung von oberflächennahen Temperaturerhöhungen und die chemische Analyse aufsteigender vulkanischer Gase.
Aufzeichnung seismischer Aktivität
Ein Eruptionsprozess wird zunächst vom Aufstieg des Magmas eingeleitet. Wenn das Magma auf vorgezeichneten oder neuen Bruchlinien, Spalten oder Rissen zur Erdoberfläche emporsteigt, entstehen durch Spannungen im Umgebungsgestein und durch Entgasungsprozesse des Magmas charakteristische seismische Signale. Gestein zerbricht dabei und Risse beginnen zu vibrieren. Die Zerstörung von Gestein löst Erdbeben mit hoher Frequenz aus, die Bewegung der Risse dagegen führt zu niedrig frequenten Beben, dem so genannten vulkanischen Tremor.
Um Tiefe und Herd der vulkanischen Beben zu ermitteln, wird in der Regel ein Netz von äußerst empfindlichen Seismometern rund um den Vulkan eingerichtet. Denn gerade die schwachen Erdbeben, die eine Stärke von weniger als 1 haben, sind häufig Anzeichen dafür, dass ein Vulkan aktiv wird. Zum Beispiel wurden am betroffenen Südwesthang des Ätna in den 12 Stunden vor dem 1981er Ausbruch etwa 2.800 kleinere Erdstöße durch die vor Ort installierten Seismometer als Tremor registriert. Über ein automatisches Übertragungssystem wurden die Daten direkt zum Istituto Internazionale di Vulcanologia in Catania weitergeleitet. Mit Hilfe moderner Technik werden Veränderungen der seismischen Aktivität heute in Echtzeit ermittelt. Strukturen und Vorgänge unter der Erdoberfläche können damit unmittelbar und exakt dargestellt und analysiert werden.
Geodätische Überwachung
Dringt Magma aus der Tiefe nach oben, so können in bestimmten Bereichen des Vulkans Deformationen der Erdoberfläche in Form von Aufbeulungen, Absenkungen, Neigungen, Buckeln und Rissen entstehen. Diese Deformationen können mit meist in Bohrlöchern des Gesteins fest installierten Neigungsmessern (Klinometern) und Dehnungsmessern (Extensiometern) vor Ort gemessen werden. Diese Phänomene können aber auch schon mit einfachen Mitteln wie zum Beispiel mit einem Bandmaß oder durch aufgesprühte Linien erkannt werden.
Anfang August 1982 hatten Geologen im Kraterboden des Mount St. Helens viele schmale Bodenrisse entdeckt und sie mit Farblinien markiert. Zwei Tage später bereits waren die Linien deutlich gekrümmt, was eine Veränderung der Risse durch aufsteigendes Magma anzeigte. Wenige Tage später kam es zu einer heftigen Eruption des Vulkans. Im Oktober 2004 wurde am Mount St. Helens eine Aufbeulung einer Vulkanflanke von mehr als 100 m beobachtet, die auch mit bloßem Auge sichtbar war.
Eine komplexere und exaktere Methode zur Erfassung morphologischer Veränderungen ist zum Beispiel die Messung horizontaler Entfernungen mit Elektronischer Distanzmessung (EDM). Ein EDM kann elektromagnetische Signale senden und empfangen. Die Wellenphase verschiebt sich dabei in Abhängigkeit von der Entfernung zwischen EDM und reflektierendem Objekt und gibt damit das Ausmaß der entstandenen Verschiebung an. EDMs haben Reichweiten bis zu 50 km und hohe Messgenauigkeiten von wenigen Millimetern. Oberflächenveränderungen vor allem größerer Gebiete und abgelegener Vulkane werden mit Hilfe von satellitengestützten geodätischen Messverfahren beobachtet.
Da sich in Folge von Deformationen des Geländes auch Grundwasser- und Oberflächenwasserstände relativ zu einander verändern können, werden oft Grundwassermessstellen eingerichtet und in gewässernahen Gebieten Fluss- und Seewasserpegel installiert.
Messung gravimetrischer und magnetometrischer Veränderungen
Dringen heiße Gesteinsschmelzen in oberflächennahe Erdschichten, so werden lokale Veränderungen im Schwerefeld beobachtet. Diese örtlichen Veränderungen werden durch Dichteunterschiede zwischen Magma und Umgebungsgestein verursacht. Solche so genannten mikrogravimetrischen Anomalien lassen sich mit Hilfe von hoch empfindlichen Gravimetern entdecken, die an aktiven Vulkanen zum Einsatz kommen.
Beim Magma-Aufstieg können auch lokale Änderungen des Magnetfeldes registriert werden, die durch thermische Einwirkungen verursacht werden. Bereits 1981 wurden am Südhang des Ätna und in etwa 20 km Entfernung zum Ätna zwei magnetometrische Stationen mit automatischer Daten-Fernübertragung in Betrieb genommen.
Erfassung von Temperaturerhöhungen
Der Aufstieg des etwa 1.200 °C heißen Magmas aus einer Magmakammer oder direkt aus dem oberen Erdmantel geht in erster Linie mit einer lokalen Temperaturerhöhung des Nebengesteins einher. Mit Hilfe ortsfester Stationen zur Temperaturmessung und durch Infrarot-Aufnahmen von Satelliten aus können solche thermischen Aufheizungen festgestellt werden, die durch oberflächennahe Stauung aufgedrungener Schmelzen entstehen.
Analyse aufsteigender Gase
Eruptive Gase sind die Haupttriebkraft der vulkanischen Aktivität. Änderungen ihrer Menge, ihrer Temperatur und ihrer chemischen Zusammensetzung sind für die Vorhersage eines Vulkanausbruchs von grundlegender Bedeutung. Generell sind die Schwankungen im Chemismus der Gase um so höher, je heißer die Gase sind und je reger die vulkanische Aktivität ist. Bei hohem Gasausstoß lässt sich die Konzentration gewisser Gase mit Hilfe ihres Absorptionsspektrums im sichtbaren Licht auch durch Fernerkundung bestimmen. Die geochemische Überwachung erstreckt sich auch auf die Beobachtung von Grundwasser und von Quellen. Denn unterirdisches Wasser wird oft von vulkanischen Gasen kontaminiert, die dem Magma entweichen und sich im Boden ausbreiten.
Im Rahmen der internationalen Dekade zur Schadensminimierung bei Naturkatastrophen (1990-2000) wurden 15 Vulkane weltweit als Forschungsobjekte ausgewählt und kontinuierlich überwacht, darunter auch der Vesuv und der Ätna.
Trotz der Vielzahl der Frühwarnsysteme und vieler neuer Erkenntnisse auf diesem Gebiet wird sich bei Vulkanausbrüchen eine gewisse Unberechenbarkeit nie ganz ausschalten lassen. Parallel zur Vorhersage gefährlicher Eruptionen sind Schutzmaßnahmen, Risiko- und Handlungspläne, Aufklärung der betroffenen Bevölkerung und gesetzliche Regelungen für den Ernstfall notwendig.
Siehe auch:
Eine umfangreiche Übersicht über Vulkane auf der Erde sowie in unserem Sonnensystem ist in Liste der Vulkane verfügbar.
Quellen
Felix Frank: Handbuch der 1350 aktiven Vulkane der Welt, Ott Verlag, Thun 2003, ISBN 3-7225-6792-0
Weblinks
Wiktionary: Vulkan – Bedeutungserklärungen, Wortherkunft, Synonyme und Übersetzungen |
Commons: Vulkan – Bilder, Videos und/oder Audiodateien |
- Weltkarte mit Vulkanen und Plattengrenzen (PDF-Datei)
- http://www.uni-muenster.de/MineralogieMuseum/vulkane/Vulkan-2.htm
- Vulkane der Welt - Umfangreiche Informationsseite
- current eruptions - Ständig aktualisierte Seite über laufende vulkanische Aktivitäten (englisch)
Kategorien: Vulkanismus | Vulkan | Atoll