Demostración por contraposición
De Wikipedia, la enciclopedia libre
Si tenemos que demostrar que una proposición p implica una proposición q (es decir, si se da p, se tiene que dar q), a veces es más sencillo demostrar que si no se da q, entonces no puede cumplirse p. Esto se conoce como demostración por contraposición. Nótese que "p implica q" y "no q implica no p" son proposiciones equivalentes.
[editar] Ejemplo
Un ejemplo sencillo: "Demuéstrese que todos los números primos mayores que 2 son impares". Aquí, la proposición p es "n es un número primo mayor que 2" y la proposición q es "n es un número impar". Demostrar que todo número primo mayor que 2 es impar (p -> q) es lo mismo que demostrar que no existe un número par que sea número primo mayor que 2, o equivalentemente, que el único número primo par es 2 (no q -> no p).
Esto es más fácil de demostrar, ya que todo número par se puede escribir como n = 2 × k, donde k es mayor o igual que 1 (la idea de número primo tiene sentido sólo en los números naturales). Si k es igual a 1, tenemos n = 2, número primo. Si, por el contrario, k es mayor que 1, entonces n es mayor que 2, pero no es primo ya que tiene algún factor que no es ni 1 ni él mismo. Así que 2 es el único número primo par, por lo que se ha demostrado que todos los números primos mayores que 2 son impares.