New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
A Thalész-tétel megfordítása - Wikipédia

A Thalész-tétel megfordítása

A Wikipédiából, a szabad lexikonból.

A Thalész-tétel megfordítása a matematikában a geometria egyik tétele; többféleképp is megfogalmazható.

[szerkesztés] Egyszerűbb megfogalmazásai

 A Thalész-tétel megfordítása szerint ha a γ szög derékszö, akkor A,B,C is rajta van az F középpontú körön
A Thalész-tétel megfordítása szerint ha a γ szög derékszö, akkor A,B,C is rajta van az F középpontú körön
  1. Ha egy háromszög derékszögű, akkor három csúcsa olyan körön van, melynek átmérője az átfogó.
  2. A derékszögű háromszög köré olyan kör írható, melynek középpontja az átfogó felezőpontja).
  3. (A kör definícióját alkalmazva): ha egy háromszög derékszögű, akkor leghosszabb oldalának (átfogójának) felezőpontjától az összes csúcspont egyenlő távolságra esik [1]
  4. Ha az átmérő egy C pontból derékszögben látszik, akkor C a köríven van (de nem az átmérőn). Ha az átmérő egy C pontból derékszögben látszik, akkor C a köríven van (de nem az átmérőn). Vagy elegánsabban foglamazva: Csak a köríven lévő pontokból látszódhat az átmérő derékszög alatt.

Megjegyzés: Egy, az AB szakaszon kívül lévő P pontból az AB szakasz α nagyságú szögben látszik, ha az ABP háromszög P-nél lévő belső szöge éppen α. 1.ábra

[szerkesztés] Motiváció

Egy P \Rightarrow Q alakú tétel megfordításán a Q\Rightarrow P állítást értjük.

A Thalész tétel szerint, az AB átmérőjű körvonalnak bármely, az A,B pontoktól különböző pontját véve, az ACBΔ háromszög derékszögű. Tehát

Ha az AB szakasz F felezőpontjára igaz, hogy a végpontoktól különböző C pont ugyanakkora távolságra van F-től, mint az A és a B, akkor az ABC pontok olyan háromszöget alkotnak, melynek C-nél fekvő szöge derékszög.

Ennek a tételnek a megfordítása tehát valóban a következő állítás:

Ha az ABC pontok olyan háromszöget alkotnak, melynek C-nél fekvő szöge derékszög, akkor az AB szakasz F felezőpontjára igaz, hogy a végpontoktól különböző C pont ugyanakkora távolságra van F-től, mint az A és a B.

A „szög alatt látszik” fordulattal fogalmazva, Thalész tétele így szól: "Egy kör átmérője a kör (átmérőtől különböző) pontjaiból derékszögben látszik." - vagy, hogy a ha-akkor szerkezet felismerhetővé váljék:

Ha egy C pont a kör ívén van (de nem az átmérőn), akkor az átmérő C-ből derékszög alatt látszik.

A Thalész-tétel megfordítása tehát ez lesz:

Ha az átmérő egy C pontból derékszögben látszik, akkor C a köríven van (de nem az átmérőn).

Vagy elegánsabban foglamazva:

Csak a köríven lévő pontokból látszódhat az átmérő derékszög alatt.

Már Eukleidész is tudta, hogy a Thalész-tétel megfordítható, azaz a tétel megfordítása bizonyítható:

[szerkesztés] Bizonyítások

  • Tétel - A Thalész-tétel megfordítása - Legyen egy kör átmérője AB. Ha egy C pontból AB derékszögben látszik, akkor C a körön van.

Bizonyítás. Az egyik lehetséges bizonyításhoz tekintsük a mellékelt ábrát, melyen T az ABCΔ átfogóhoz tartozó magasságának talppontja, mely x távolságra van az átfogó O felezőpontjától. Azt kell belátnunk, AO=OB=OC. így a Thalész-tétel Pithagorasz-tétel megfordításának felhasználásával történő bizonyítására. Ebben az esetben a következőket tudjuk (a CTBΔ és ATCΔ és ABCΔ derékszögű háromszögekre a Pitagorasz-tételt felírva

(r + x)2 + m2 = b2
(r - x)2 + m2 = a2
a2 + b2 = d2

Az x2 + m2 = r2 egyenlőséget most nem felhasználni, hanem igazolni fogjuk. Az első két egyenlőséget összeadva és rendezve, adódik:

a2 + b2 = 2r2 + 2(x2 + m2)

vagyis:

2(x2 + m2) = a2 + b2 - 2r2

de a2 + b2 = d2 miatt:

2(x2 + m2) = d2 - 2r2 = 4r2 - 2r2 = 2r2

ahonnan:

x2 + m2 = r2

vagyis az OC szakasz éppen r (sugárnyi) hosszúságú, így C a körön van. QED

Megjegyzés. Az O = T eset triviális (ekkor ACBΔ egyenlőszárú derékszögű háromszög, a CT = CO a derékszöghöz tartozó szögfelezője, mely a háromszöget két szintén egyenlőszárú derékszögű háromszögre vágja szét, a szárak AO és OC, illetve OB és OC ez esetben szintén egyenlőek).

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu