New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Storia della combinatoria - Wikipedia

Storia della combinatoria

Da Wikipedia, l'enciclopedia libera.

Stub Questa voce di matematica è solo un abbozzo: contribuisci a migliorarla secondo le convenzioni di Wikipedia.

Problemi combinatori sono stati studiati fin dall'antichità, ma la combinatoria come area consistente della matematica è stata pienamente riconosciuta solo nell'ultimo cinquantennio.

Indice

[modifica] Antichità

Nell'antichità sembra essere stata coltivata solo nelle civiltà orientali.

Presso gli Indù erano note ai tempi di Bhaskara intorno al 1150 le espressioni per i numeri delle permutazioni e delle combinazioni; forse erano note anche a Brahamagupta nel VI secolo.

Vi sono documenti riguardanti lo studio dei quadrati magici in Cina nel I secolo; non sembra giustificato sostenere che fosse noto fin dal 2200 a.C. il famoso

\begin{bmatrix} 8 & 1 & 6 \\ 3 & 5 & 7 \\ 4 & 9 & 2 \\ \end{bmatrix}

I quadrati magici vengono studiati ampiamente in Cina negli anni tra il 900 e il 1300. Essi sono studiati anche nel mondo islamico. In questi studi si hanno sempre toni mistici. Essi e i quadrati latini giungono in Occidente attraverso il matematico bizantino Moschopolous intorno al 1315.

Un altro oggetto studiato è quello che in Italia si chiama prevalentemente triangolo di Tartaglia. Noto agli indiani, si ritrova nel XIII secolo in Giordano Nemorario nell'opera dell'arabo Al Tusi e nei testi cinesi intorno al 1300; questi verosimilmente riprendono risultati ora perduti di Chia Hsien ottenuti intorno all'anno 1100.

Ricordiamo infine Fibonacci con i suoi numeri

[modifica] Secolo XVII

Pascal con il Traité del 1665 analizza il triangolo ora noto giustamente con il suo nome.

Leibniz con Dissertatio de arte combinatoria del 1666 (rifacendosi anche a Ramon Lull) propone di studiare questi argomenti, parla di partizioni di interi e di geometria della posizione.

Harriot, [[Pascal ed Eulero chiariscono lo stretto collegamento fra sviluppo formale e lista di configurazioni combinatorie (collegamento fra algebra e combinatoria).

De Moivre nel 1697 dimostra lo sviluppo multinomiale; inoltre scopre il principio di inclusione ed esclusione e con esso calcola il numero dei derangement.

[modifica] Secolo XVIII

De Moivre trova l'espressione chiusa per i numeri di Fibonacci (1930).

Ad Eulero si devono la nascita della teoria dei grafi con il problema dei ponti di Kônigsberg, lo studio delle partizioni con la relativa funzione generatrice e la loro connessione con le funzioni simmetriche e la posizione del problema dei quadrati greco-latini, ovvero delle coppie di quadrati latini ortogonali.

Formula di inversione di Lagrange.

[modifica] Secolo XIX

La combinatoria interessa attività pratiche (1818).

Si incontra nei gruppi di permutazioni, studiati da Lagrange, Galois e Cauchy.

Calcolo di Blissard o calcolo umbrale.

Il permanente studiato da Binet e Cauchy.

Si studiano il problema degli incontri e il problema dei ménages

Attraverso la matematica ricreativa si introducono altri problemi: il problema dei grafi hamiltoniani, il problema dei 4 colori posto da Francis Guthrie, le triple di Steiner.

Problema del calcolo delle orbite con il lemma di Cauchy-Frobenius

Un primo testo che ha dato peso alla combinatoria è dovuto a Netto.

Problemi degli invarianti Cayley, Sylvester,

Michele Capelli Emilio Bonferroni Francesco Faà di Bruno

Contributi alla enumerazione da MacMahon

[modifica] Inizio del XX secolo

Caduta dell'importanza dei metodi costruttivi, con una certa colpa di Hilbert e poi dei Bourbakisti

La combinatoria accenna a raggiungere una certa autonomia dopo la pubblicazione del testo Combinatory Analysis di Percy Alexander MacMahon nel 1915. La sua importanza è cresciuta gradualmente negli anni successivi: sono da ricordare i testi di König sulla teoria dei grafi e di Marshall Hall.

Ramsey Kuratovski

[modifica] Dopo gli anni 1960

Il suo sviluppo ha ricevuto impulso dall'opera di Gian-Carlo Rota, che a partire dagli anni 1960, ha contribuito alla fondazione di teorie unificatrici di ampia portata e di grande chiarezza formale.

Un'altra figura influente è stata quella di Marcel Paul Schützenberger.

Un'azione diversa, ma molto efficace, si deve a Paul Erdős e alla sua capacità di porre e risolvere problemi, i suoi contributi riguardando soprattutto problemi estremali.

Gel'fand

Laszlo Lovasz

Richard Stanley Bela Ballobas

[modifica] Combinatorica algoritmica

Algoritmo greedy

Problema del commesso viaggiatore

Complessità computazionale

Problemi di trasporto sui grafi Ford e Fulkerson

Combinatoria poliedrale

Programmazione lineare e Metodo del simplesso

Teoria dei giochi

[modifica] Sistemi software per la combinatorica

ACE, Symmetrica, ...

[modifica] Voci correlate

[modifica] Bibliografia

  • Norman L. Biggs, E. Keith Lloyd, Robin J. Wilson (1995): The history of combinatorics, pp. 2163-2198 in Ronald Graham, Martin Grötschel, Laszlo Lovasz Handbook of combinatorics, North Holland
  • Norman L. Biggs, E. Keith Lloyd, Robin J. Wilson (1976): Graph theory (1736-1936), Clarendon Press

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu