五角形
出典: フリー百科事典『ウィキペディア(Wikipedia)』
五角形(ごかくけい)とは、5つの頂点と辺を持つ多角形の総称。
目次 |
[編集] 正五角形
正五角形は、各辺の長さが等しく、内角も108°(中心角は72°)と一定な五角形である。辺の長さを a とすると
- 面積
- 内接円の半径
- 外接円の半径
[編集] 正五角形の作図
正五角形は定規とコンパスによる作図が可能である。以下に示すのは古典的な方法の一つである。
- 直線上の一点Oを中心にとった円を描画し、直線と交わる二点をA, Bとする。ABの垂直二等分線、及びOAの垂直二等分線を作図する。
- OAとその垂直二等分線が交わる点をC、円OとABの垂直二等分線が交わる点のうち一つをDとする。CDを半径にとり、Cを中心にDからABまで弧を描画する。弧とABが交わる点をEとする。
- DEを半径にとり、Dを中心に弧を描画する。弧が円Oと交わる二点をF, Gとする。
- 同じ半径のままF, Gを中心とした弧を描画する。これらの弧が円Oと交わる五点D, F, G, I, Hを結ぶ図形が正五角形である。
[編集] 定理
[編集] その他五角形に関する事項
- アメリカ国防総省を俗にペンタゴンというが、これは庁舎が五角形である事に由来する。
- 五角形を模した星形(☆)を五芒星(ペンタグラム)という。長崎市の市章はペンタグラムとなっている。
- 自然界には五角形の物が数多く存在する。ヒトデ、星の砂、ウニも、殻の中には5個の卵巣を持っている。
で、これに黄金比を掛けると1/2になる。つまり、2sin18°は黄金比の逆数。
- 五角数は多角数の一つである。
[編集] 参考文献
- 高木貞治 『数学小景』 岩波書店〈岩波現代文庫〉、2002年。ISBN 4006000812
カテゴリ: 数学関連のスタブ項目 | 多角形 | 初等数学 | 数学に関する記事