New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
List of uniform polyhedra by Wythoff symbol - Wikipedia, the free encyclopedia

List of uniform polyhedra by Wythoff symbol

From Wikipedia, the free encyclopedia

Polyhedron
Class Number and properties
Platonic solids
(5, convex, regular)
Archimedean solids
(13, convex, uniform)
Kepler-Poinsot solids
(4, regular, non-convex)
Uniform polyhedra
(75, uniform)
Prismatoid:
prisms, antiprisms etc.
(4 infinite uniform classes)
Polyhedra tilings (11 regular, in the plane)
Quasi-regular polyhedra
(8)
Johnson solids (92, convex, non-uniform)
Pyramids and Bipyramids (infinite)
Stellations Stellations
Polyhedral compounds (5 regular)
Deltahedra (Deltahedra,
equalatial triangle faces)
Snub polyhedra
(12 uniform, not mirror image)
Zonohedron (Zonohedra,
faces have 180°symmetry)
Dual polyhedron
Self-dual polyhedron (infinite)
Catalan solid (13, Archimedean dual)

There are many relations among the uniform polyhedron.

Here they are grouped by the Wythoff symbol.

Contents

[edit] Key

Image:Image
Name
Bowers pet name
V Number of vertices,E Number of edges,F Number of faces=Face configuration
?=Euler characteristic, group=Symmetry group
Wythoff symbol - Vertex figure
W - Wenninger number, U - Uniform number, K- Kalido number, C -Coxeter number
alternative name
second alternative name

[edit] Regular

All the faces are identical, each edge is identical and each vertex is identical. The all have a Wythoff symbol of the form p|q 2.

[edit] Convex

The Platonic solids.


Tetrahedron
Tet
V 4,E 6,F 4=4{3}
χ=2, group=Td
3 | 2 3 - 3.3.3
W1, U01, K06, C15


Octahedron
Oct
V 6,E 12,F 8=8{3}
χ=2, group=Oh
4 | 2 3 - 3.3.3.3
W2, U05, K10, C17


Hexahedron
Cube
V 8,E 12,F 6=6{4}
χ=2, group=Oh
3 | 2 4 - 4.4.4
W3, U06, K11, C18


Icosahedron
Ike
V 12,E 30,F 20=20{3}
χ=2, group=Ih
5 | 2 3 - 3.3.3.3.3
W4, U22, K27, C25


Dodecahedron
Doe
V 20,E 30,F 12=12{5}
χ=2, group=Ih
3 | 2 5 - 5.5.5
W5, U23, K28, C26

[edit] Non-convex

The Kepler-Poinsot solids.


Great icosahedron
Gike
V 12,E 30,F 20=20{3}
χ=2, group=Ih
5/2 | 2 3 - (35)/2
W41, U53, K58, C69


Great dodecahedron
Gad
V 12,E 30,F 12=12{5}
χ=-6, group=Ih
5/2 | 2 5 - (55)/2
W21, U35, K40, C44


Small stellated dodecahedron
Sissid
V 12,E 30,F 12=12{5/2}
χ=-6, group=Ih
5 | 25/2 - (5/2)5
W20, U34, K39, C43


Great stellated dodecahedron
Gissid
V 20,E 30,F 12=12{5/2}
χ=2, group=Ih
3 | 25/2 - (5/2)3
W22, U52, K57, C68

[edit] Quasi-regular

Each edge is identical and each vertex is identical. There are two types of faces which appear in an alternating fashion around each vertex. The first row are semi-regular with 4 faces around each vertex. They have Wythoff symbol 2|p q. The second row are ditrigonal with 6 faces around each vertex. They have Wythoff symbol 3|p q or 3/2|p q.


Cuboctahedron
Co
V 12,E 24,F 14=8{3}+6{4}
χ=2, group=Oh
2 | 3 4 - 3.4.3.4
W11, U07, K12, C19


Icosidodecahedron
Id
V 30,E 60,F 32=20{3}+12{5}
χ=2, group=Ih
2 | 3 5 - 3.5.3.5
W12, U24, K29, C28


Great icosidodecahedron
Gid
V 30,E 60,F 32=20{3}+12{5/2}
χ=2, group=Ih
2 | 3 5/2 - 3.5/2.3.5/2
W94, U54, K59, C70


Dodecadodecahedron
Did
V 30,E 60,F 24=12{5}+12{5/2}
χ=-6, group=Ih
2 | 5 5/2 - 5.5/2.5.5/2
W73, U36, K41, C45


Small ditrigonal icosidodecahedron
Sidtid
V 20,E 60,F 32=20{3}+12{5/2}
χ=-8, group=Ih
3 | 5/23 - (3.5/2)3
W70, U30, K35, C39


Ditrigonal dodecadodecahedron
Ditdid
V 20,E 60,F 24=12{5}+12{5/2}
χ=-16, group=Ih
3 | 5/35 - (5.5/3)3
W80, U41, K46, C53


Great ditrigonal icosidodecahedron
Gidtid
V 20,E 60,F 32=20{3}+12{5}
χ=-8, group=Ih
3/2 | 3 5 - ((3.5)3)/2
W87, U47, K52, C61

[edit] Wythoff p q|r

[edit] Truncated regular forms

Each vertex has three faces surrounding it, two of which are identical. These all have Wythoff symbols 2 p|q, some are constructed by truncating the regular solids.


Truncated tetrahedron
Tut
V 12,E 18,F 8=4{3}+4{6}
χ=2, group=Td
2 3 | 3 - 3.6.6
W6, U02, K07, C16


Truncated octahedron
Toe
V 24,E 36,F 14=6{4}+8{6}
χ=2, group=Oh
2 4 | 3 - 4.6.6
W7, U08, K13, C20


Truncated cube
Tic
V 24,E 36,F 14=8{3}+6{8}
χ=2, group=Oh
2 3 | 4 - 3.8.8
W8, U09, K14, C21
Truncated hexahedron


Truncated icosahedron
Ti
V 60,E 90,F 32=12{5}+20{6}
χ=2, group=Ih
2 5 | 3 - 5.6.6
W9, U25, K30, C27


Truncated dodecahedron
Tid
V 60,E 90,F 32=20{3}+12{10}
χ=2, group=Ih
2 3 | 5 - 3.10.10
W10, U26, K31, C29


Truncated great dodecahedron
Tigid
V 60,E 90,F 24=12{5/2}+12{10}
χ=-6, group=Ih
25/2 | 5 - 10.10.5/2
W75, U37, K42, C47


Truncated great icosahedron
Tiggy
V 60,E 90,F 32=12{5/2}+20{6}
χ=2, group=Ih
25/2 | 3 - 6.6.5/2
W95, U55, K60, C71


Stellated truncated hexahedron
Quith
V 24,E 36,F 14=8{3}+6{8/3}
χ=2, group=Oh
2 3 | 4/3 - 3.8/3.8/3
W92, U19, K24, C66
Quasitruncated hexahedron stellatruncated cube


Small stellated truncated dodecahedron
Quitsissid
V 60,E 90,F 24=12{5}+12{10/3}
χ=-6, group=Ih
2 5 | 5/3 - 5.10/3.10/3
W97, U58, K63, C74
Quasitruncated small stellated dodecahedron Small stellatruncated dodecahedron


Great stellated truncated dodecahedron
Quitgissid
V 60,E 90,F 32=20{3}+12{10/3}
χ=2, group=Ih
2 3 | 5/3 - 3.10/3.10/3
W104, U66, K71, C83
Quasitruncated great stellated dodecahedron Great stellatruncated dodecahedron

[edit] Hemi-hedra

The hemi-hedra all have faces which pass through the origin. Their Wythoff symbols are of the form p p/m|q or p/m p/n|q. With the exception of the tetrahemihexahedron they occur in pairs, and are closely related to the semi-regular polyhedra, like the cuboctohedron.


Tetrahemihexahedron
Thah
V 6,E 12,F 7=4{3}+3{4}
χ=1, group=Td
3/23 | 2 - 3.4.3/2.4
W67, U04, K09, C36


Octahemioctahedron
Oho
V 12,E 24,F 12=8{3}+4{6}
χ=0, group=Oh
3/23 | 3 - 3.6.3/2.6
W68, U03, K08, C37


Cubohemioctahedron
Cho
V 12,E 24,F 10=6{4}+4{6}
χ=-2, group=Oh
4/34 | 3 - 4.6.4/3.6
W78, U15, K20, C51


Small icosihemidodecahedron
Seihid
V 30,E 60,F 26=20{3}+6{10}
χ=-4, group=Ih
3/23 | 5 - 3.10.3/2.10
W89, U49, K54, C63


Small dodecahemidodecahedron
Sidhid
V 30,E 60,F 18=12{5}+6{10}
χ=-12, group=Ih
5/45 | 5 - 5.10.5/4.10
W91, U51, K56, C65


Great icosihemidodecahedron
Geihid
V 30,E 60,F 26=20{3}+6{10/3}
χ=-4, group=Ih
3 3 | 5/3 - 3.10/3.3.10/3
W106, U71, K76, C85


Great dodecahemidodecahedron
Gidhid
V 30,E 60,F 18=12{5/2}+6{10/3}
χ=-12, group=Ih
5/35/2 | 5/3 - 5/2.10/3.5/3.10/3
W107, U70, K75, C86


Great dodecahemicosahedron
Gidhei
V 30,E 60,F 22=12{5}+10{6}
χ=-8, group=Ih
5/45 | 3 - 5.6.5/4.6
W102, U65, K70, C81


Small dodecahemicosahedron
Sidhei
V 30,E 60,F 22=12{5/2}+10{6}
χ=-8, group=Ih
5/35/2 | 3 - 6.5/2.6.5/3
W100, U62, K67, C78

[edit] Rhombic quasi-regular

Four faces around the vertex in the pattern p.q.r.q. The name rhombic stems from inserting a square in the cubeoctohedron and icodocehedron. The Wythoff symbol is of the form p q|r.


Small rhombicuboctahedron
Sirco
V 24,E 48,F 26=8{3}+(6+12){4}
χ=2, group=Oh
3 4 | 2 - 3.4.4.4
W13, U10, K15, C22
Rhombicuboctahedron


Small cubicuboctahedron
Socco
V 24,E 48,F 20=8{3}+6{4}+6{8}
χ=-4, group=Oh
3/24 | 4 - 4.8.3/2.8
W69, U13, K18, C38


Great cubicuboctahedron
Gocco
V 24,E 48,F 20=8{3}+6{4}+6{8/3}
χ=-4, group=Oh
3 4 | 4/3 - 3.8/3.4.8/3
W77, U14, K19, C50


Uniform great rhombicuboctahedron
Querco
V 24,E 48,F 26=8{3}+(6+12){4}
χ=2, group=Oh
3/24 | 2 - 4.4.4.3/2
W85, U17, K22, C59
Quasirhombicuboctahedron


Small rhombicosidodecahedron
Srid
V 60,E 120,F 62=20{3}+30{4}+12{5}
χ=2, group=Ih
3 5 | 2 - 3.4.5.4
W14, U27, K32, C30
Rhombicosidodecahedron


Small dodecicosidodecahedron
Saddid
V 60,E 120,F 44=20{3}+12{5}+12{10}
χ=-16, group=Ih
3/25 | 5 - 5.10.3/2.10
W72, U33, K38, C42


Great dodecicosidodecahedron
Gaddid
V 60,E 120,F 44=20{3}+12{5/2}+12{10/3}
χ=-16, group=Ih
5/2 3 | 5/3 - 3.10/3.6/5.10/7
W99, U61, K66, C77


Uniform great rhombicosidodecahedron
Qrid
V 60,E 120,F 62=20{3}+30{4}+12{5/2}
χ=2, group=Ih
5/33 | 2 - 3.4.5/3.4
W105, U67, K72, C84
Quasirhombicosidodecahedron


Small icosicosidodecahedron
Siid
V 60,E 120,F 52=20{3}+12{5/2}+20{6}
χ=-8, group=Ih
5/2 3 | 3 - 6.5/2.6.3
W71, U31, K36, C40


Small ditrigonal dodecicosidodecahedron
Sidditdid
V 60,E 120,F 44=20{3}+12{5/2}+12{10}
χ=-16, group=Ih
5/33 | 5 - 3.10.5/3.10
W82, U43, K48, C55


Rhombidodecadodecahedron
Raded
V 60,E 120,F 54=30{4}+12{5}+12{5/2}
χ=-6, group=Ih
5/2 5 | 2 - 4.5/2.4.5
W76, U38, K43, C48


Icosidodecadodecahedron
Ided
V 60,E 120,F 44=12{5}+12{5/2}+20{6}
χ=-16, group=Ih
5/35 | 3 - 5.6.5/3.6
W83, U44, K49, C56


Great ditrigonal dodecicosidodecahedron
Gidditdid
V 60,E 120,F 44=20{3}+12{5}+12{10/3}
χ=-16, group=Ih
3 5 | 5/3 - 3.10/3.5.10/3
W81, U42, K47, C54


Great icosicosidodecahedron
Giid
V 60,E 120,F 52=20{3}+12{5}+20{6}
χ=-8, group=Ih
3/25 | 3 - 5.6.3/2.6
W88, U48, K53, C62

[edit] Even-sided forms

[edit] Wythoff p q r|

These have three different faces around each vertex, and the vertices do not lie on any plane of symmetry. The have Wythoff symbol p q r|, and vertex figures 2p.2q.2r.


Great rhombicuboctahedron
Girco
V 48,E 72,F 26=12{4}+8{6}+6{8}
χ=2, group=Oh
2 3 4 | - 4.6.8
W15, U11, K16, C23
Rhombitruncated cuboctahedron Truncated cuboctahedron


Great truncated cuboctahedron
Quitco
V 48,E 72,F 26=12{4}+8{6}+6{8/3}
χ=2, group=Oh
2 34/3 | - 4.6.8/3
W93, U20, K25, C67
Quasitruncated cuboctahedron


Cubitruncated cuboctahedron
Cotco
V 48,E 72,F 20=8{6}+6{8}+6{8/3}
χ=-4, group=Oh
3 44/3 | - 6.8.8/3
W79, U16, K21, C52
Cuboctatruncated cuboctahedron


Great rhombicosidodecahedron
Grid
V 120,E 180,F 62=30{4}+20{6}+12{10}
χ=2, group=Ih
2 3 5 | - 4.6.10
W16, U28, K33, C31
Rhombitruncated icosidodecahedron Truncated icosidodecahedron


Great truncated icosidodecahedron
Gaquatid
V 120,E 180,F 62=30{4}+20{6}+12{10/3}
χ=2, group=Ih
2 35/3 | - 4.6.10/3
W108, U68, K73, C87
Great quasitruncated icosidodecahedron


Icositruncated dodecadodecahedron
Idtid
V 120,E 180,F 44=20{6}+12{10}+12{10/3}
χ=-16, group=Ih
3 55/3 | - 6.10.10/3
W84, U45, K50, C57
Icosidodecatruncated icosidodecahedron


Truncated dodecadodecahedron
Quitdid
V 120,E 180,F 54=30{4}+12{10}+12{10/3}
χ=-6, group=Ih
2 55/3 | - 4.10.10/3
W98, U59, K64, C75
Quasitruncated dodecahedron

[edit] Wythoff p q (r s)|

Vertex figure p.q.-p.-q. Wythoff p q (r s)|, mixing pqr| and pqs|.


Small rhombihexahedron
Sroh
V 24,E 48,F 18=12{4}+6{8}
χ=-6, group=Oh
2 4 (3/2 4/2) | - 4.8.4/3.8
W86, U18, K23, C60


Great rhombihexahedron
Groh
V 24,E 48,F 18=12{4}+6{8/3}
χ=-6, group=Oh
2 4/3 (3/2 4/2) | - 4.8/3.4/3.8/5
W103, U21, K26, C82


Rhombicosahedron
Ri
V 60,E 120,F 50=30{4}+20{6}
χ=-10, group=Ih
2 3 (5/4 5/2) | - 4.6.4/3.6/5
W96, U56, K61, C72


Great rhombidodecahedron
Gird
V 60,E 120,F 42=30{4}+12{10/3}
χ=-18, group=Ih
2 5/3 (3/2 5/4) | - 4.10/3.4/3.10/7
W109, U73, K78, C89


Great dodecicosahedron
Giddy
V 60,E 120,F 32=20{6}+12{10/3}
χ=-28, group=Ih
3 5/3 (3/2 5/2) | - 6.10/3.6/5.10/7
W101, U63, K68, C79


Small rhombidodecahedron
Sird
V 60,E 120,F 42=30{4}+12{10}
χ=-18, group=Ih
2 5 (3/2 5/2) | - 4.10.4/3.10/9
W74, U39, K44, C46


Small dodecicosahedron
Siddy
V 60,E 120,F 32=20{6}+12{10}
χ=-28, group=Ih
3 5 (3/2 5/4) | - 6.10.6/5.10/9
W90, U50, K55, C64

[edit] Snub polyhedra

These have Wythoff symbol |p q r, and one non-Wythoffian construction is given |p q r s.

[edit] Wythoff |p q r

Symmetry group
O


Snub cube
Snic
V 24,E 60,F 38=(8+24){3}+6{4}
χ=2, group=O
| 2 3 4 - 3.3.3.3.4
W17, U12, K17, C24

Ih


Small snub icosicosidodecahedron
Seside
V 60,E 180,F 112=(40+60){3}+12{5/2}
χ=-8, group=Ih
|5/2 3 3 - 35.5/2
W110, U32, K37, C41


Small retrosnub icosicosidodecahedron
Sirsid
V 60,E 180,F 112=(40+60){3}+12{5/2}
χ=-8, group=Ih
|3/2 3/2 5/2 - (35.5/3)/2
W118, U72, K77, C91
Small inverted retrosnub icosicosidodecahedron

I


Snub dodecahedron
Snid
V 60,E 150,F 92=(20+60){3}+12{5}
χ=2, group=I
| 2 3 5 - 3.3.3.3.5
W18, U29, K34, C32


Snub dodecadodecahedron
Siddid
V 60,E 150,F 84=60{3}+12{5}+12{5/2}
χ=-6, group=I
|2 5/2 5 - 3.3.5/2.3.5
W111, U40, K45, C49


Inverted snub dodecadodecahedron
Isdid
V 60,E 150,F 84=60{3}+12{5}+12{5/2}
χ=-6, group=I
|5/3 2 5 - 3.3.5.3.5/3
W114, U60, K65, C76

I


Great snub icosidodecahedron
Gosid
V 60,E 150,F 92=(20+60){3}+12{5/2}
χ=2, group=I
|2 5/2 3 - 34.5/2
W116, U57, K62, C88


Great inverted snub icosidodecahedron
Gisid
V 60,E 150,F 92=(20+60){3}+12{5/2}
χ=2, group=I
|5/3 2 3 - 34.5/3
W113, U69, K74, C73


Great retrosnub icosidodecahedron
Girsid
V 60,E 150,F 92=(20+60){3}+12{5/2}
χ=2, group=I
|3/2 5/3 2 - (34.5/2)/2
W117, U74, K79, C90
Great inverted retrosnub icosidodecahedron

I


Snub icosidodecadodecahedron
Sided
V 60,E 180,F 104=(20+60){3}+12{5}+12{5/2}
χ=-16, group=I
|5/3 3 5 - 3.3.3.5.3.5/3
W112, U46, K51, C58


Great snub dodecicosidodecahedron
Gisdid
V 60,E 180,F 104=(20+60){3}+(12+12){5/2}
χ=-16, group=I
| 5/3 5/2 3 - 3.3.3.5/2.3.5/3
W115, U64, K69, C80

[edit] Wythoff |p q r s

Symmetry group
Ih


Great dirhombicosidodecahedron
Gidrid
V 60,E 240,F 124=40{3}+60{4}+24{5/2}
χ=-56, group=Ih
|3/2 5/3 3 5/2 - (4.5/3.4.3.4.
5/2.4.3/2)/2

W119, U75, K80, C92

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu