New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
List of uniform polyhedra by spherical triangle - Wikipedia, the free encyclopedia

List of uniform polyhedra by spherical triangle

From Wikipedia, the free encyclopedia

Polyhedron
Class Number and properties
Platonic solids
(5, convex, regular)
Archimedean solids
(13, convex, uniform)
Kepler-Poinsot solids
(4, regular, non-convex)
Uniform polyhedra
(75, uniform)
Prismatoid:
prisms, antiprisms etc.
(4 infinite uniform classes)
Polyhedra tilings (11 regular, in the plane)
Quasi-regular polyhedra
(8)
Johnson solids (92, convex, non-uniform)
Pyramids and Bipyramids (infinite)
Stellations Stellations
Polyhedral compounds (5 regular)
Deltahedra (Deltahedra,
equalatial triangle faces)
Snub polyhedra
(12 uniform, not mirror image)
Zonohedron (Zonohedra,
faces have 180°symmetry)
Dual polyhedron
Self-dual polyhedron (infinite)
Catalan solid (13, Archimedean dual)

There are many relations among the uniform polyhedron.

Here they are grouped by the Wythoff symbol

Contents

[edit] Key

Image:Image
Name
Bowers pet name
V Number of vertices,E Number of edges,F Number of faces=Face configuration
?=Euler characteristic, group=Symmetry group
Wythoff symbol - Vertex figure
W - Wenninger number, U - Uniform number, K- Kalido number, C -Coxeter number
alternative name
second alternative name

The vertex figure can be discovered by considering the Wythoff symbol:

  • p|q r - 2p edges, alternating q-gons and r-gons. Vertex figure (q.r)p.
  • p|q 2 - p edges, q-gons (here r=2 so the r-gons are degenerate lines).
  • 2|q r - 4 edges, alternating q-gons and r-gons
  • q r|p - 4 edges, 2p-gons, q-gons, 2p-gons r-gons, Vertex figure 2p.q.2p.r.
  • q 2|p - 3 edges, 2p-gons, q-gons, 2p-gons, Vertex figure 2p.q.2p.
  • p q r|- 3 edges, 2p-gons, 2q-gons, 2r-gons, vertex figure 2p.2q.2r

[edit] Convex

Spherical triangle

{\pi\over p}\ {\pi\over q}\ {\pi\over r}

p|q r q|p r r|p q q r|p p r|q p q|r p q r| |p q r
{\pi\over 3}\ {\pi\over 3}\ {\pi\over 2}

Tetrahedron
Tet
V 4,E 6,F 4=4{3}
χ=2, group=Td
3 | 2 3 - 3.3.3
W1, U01, K06, C15

Octahedron

Truncated tetrahedron
Tut
V 12,E 18,F 8=4{3}+4{6}
χ=2, group=Td
2 3 | 3 - 3.6.6
W6, U02, K07, C16

Cuboctahedron
{\pi\over 4}\ {\pi\over 3}\ {\pi\over 2}

Octahedron
Oct
V 6,E 12,F 8=8{3}
χ=2, group=Oh
4 | 2 3 - 3.3.3.3
W2, U05, K10, C17


Hexahedron
Cube
V 8,E 12,F 6=6{4}
χ=2, group=Oh
3 | 2 4 - 4.4.4
W3, U06, K11, C18


Cuboctahedron
Co
V 12,E 24,F 14=8{3}+6{4}
χ=2, group=Oh
2 | 3 4 - 3.4.3.4
W11, U07, K12, C19


Truncated cube
Tic
V 24,E 36,F 14=8{3}+6{8}
χ=2, group=Oh
2 3 | 4 - 3.8.8
W8, U09, K14, C21
Truncated hexahedron


Truncated octahedron
Toe
V 24,E 36,F 14=6{4}+8{6}
χ=2, group=Oh
2 4 | 3 - 4.6.6
W7, U08, K13, C20


Small rhombicuboctahedron
Sirco
V 24,E 48,F 26=8{3}+(6+12){4}
χ=2, group=Oh
3 4 | 2 - 3.4.4.4
W13, U10, K15, C22
Rhombicuboctahedron


Great rhombicuboctahedron
Girco
V 48,E 72,F 26=12{4}+8{6}+6{8}
χ=2, group=Oh
2 3 4 | - 4.6.8
W15, U11, K16, C23
Rhombitruncated cuboctahedron Truncated cuboctahedron


Snub cube
Snic
V 24,E 60,F 38=(8+24){3}+6{4}
χ=2, group=O
| 2 3 4 - 3.3.3.3.4
W17, U12, K17, C24

{\pi\over 5}\ {\pi\over 3}\ {\pi\over 2}

Icosahedron
Ike
V 12,E 30,F 20=20{3}
χ=2, group=Ih
5 | 2 3 - 3.3.3.3.3
W4, U22, K27, C25


Dodecahedron
Doe
V 20,E 30,F 12=12{5}
χ=2, group=Ih
3 | 2 5 - 5.5.5
W5, U23, K28, C26


Icosidodecahedron
Id
V 30,E 60,F 32=20{3}+12{5}
χ=2, group=Ih
2 | 3 5 - 3.5.3.5
W12, U24, K29, C28


Truncated dodecahedron
Tid
V 60,E 90,F 32=20{3}+12{10}
χ=2, group=Ih
2 3 | 5 - 3.10.10
W10, U26, K31, C29


Truncated icosahedron
Ti
V 60,E 90,F 32=12{5}+20{6}
χ=2, group=Ih
2 5 | 3 - 5.6.6
W9, U25, K30, C27


Small rhombicosidodecahedron
Srid
V 60,E 120,F 62=20{3}+30{4}+12{5}
χ=2, group=Ih
3 5 | 2 - 3.4.5.4
W14, U27, K32, C30
Rhombicosidodecahedron


Great rhombicosidodecahedron
Grid
V 120,E 180,F 62=30{4}+20{6}+12{10}
χ=2, group=Ih
2 3 5 | - 4.6.10
W16, U28, K33, C31
Rhombitruncated icosidodecahedron Truncated icosidodecahedron


Snub dodecahedron
Snid
V 60,E 150,F 92=(20+60){3}+12{5}
χ=2, group=I
| 2 3 5 - 3.3.3.3.5
W18, U29, K34, C32

[edit] Non-convex

[edit] a b 2

[edit] 3 3 2

{a\pi\over 3}\ {b\pi\over 3}\ {c\pi\over 2} Group

Spherical triangle

{\pi\over p}\ {\pi\over q}\ {\pi\over r}

p|q r q|p r r|p q q r|p p r|q p q|r p q r| |p q r
{\pi\over 3}\ {\pi\over 2}\ {2\pi\over 3}

Tetrahemihexahedron
Thah
V 6,E 12,F 7=4{3}+3{4}
χ=1, group=Td
3/23 | 2 - 3.4.3/2.4
W67, U04, K09, C36

[edit] 4 3 2

{a\pi\over 4}\ {b\pi\over 3}\ {c\pi\over 2} Group

Spherical triangle

{\pi\over p}\ {\pi\over q}\ {\pi\over r}

p|q r q|p r r|p q q r|p p r|q p q|r p q r| |p q r
{\pi\over 4}\ {2\pi\over 3}\ {\pi\over 2} octahedron cube

Stellated truncated hexahedron
Quith
V 24,E 36,F 14=8{3}+6{8/3}
χ=2, group=Oh
2 3 | 4/3 - 3.8/3.8/3
W92, U19, K24, C66
Quasitruncated hexahedron stellatruncated cube


Uniform great rhombicuboctahedron
Querco
V 24,E 48,F 26=8{3}+(6+12){4}
χ=2, group=Oh
3/24 | 2 - 4.4.4.3/2
W85, U17, K22, C59
Quasirhombicuboctahedron


Small rhombihexahedron
Sroh
V 24,E 48,F 18=12{4}+6{8}
χ=-6, group=Oh
2 4 (3/2 4/2) | - 4.8.4/3.8
W86, U18, K23, C60

{3\pi\over 4}\ {\pi\over 3}\ {\pi\over 2}

Great truncated cuboctahedron
Quitco
V 48,E 72,F 26=12{4}+8{6}+6{8/3}
χ=2, group=Oh
2 34/3 | - 4.6.8/3
W93, U20, K25, C67
Quasitruncated cuboctahedron

{3\pi\over 4}\ {2\pi\over 3}\ {\pi\over 2}

Great rhombihexahedron
Groh
V 24,E 48,F 18=12{4}+6{8/3}
χ=-6, group=Oh
2 4/3 (3/2 4/2) | - 4.8/3.4/3.8/5
W103, U21, K26, C82

[edit] 5 3 2

{a\pi\over 5}\ {b\pi\over 3}\ {c\pi\over 2} Group

Spherical triangle

{\pi\over p}\ {\pi\over q}\ {\pi\over r}

p|q r q|p r r|p q q r|p p r|q p q|r
{2\pi\over 5}\ {\pi\over 3}\ {\pi\over 2}

Great icosahedron
Gike
V 12,E 30,F 20=20{3}
χ=2, group=Ih
5/2 | 2 3 - (35)/2
W41, U53, K58, C69


Great stellated dodecahedron
Gissid
V 20,E 30,F 12=12{5/2}
χ=2, group=Ih
3 | 25/2 - (5/2)3
W22, U52, K57, C68


Great icosidodecahedron
Gid
V 30,E 60,F 32=20{3}+12{5/2}
χ=2, group=Ih
2 | 3 5/2 - 3.5/2.3.5/2
W94, U54, K59, C70


Great stellated truncated dodecahedron
Quitgissid
V 60,E 90,F 32=20{3}+12{10/3}
χ=2, group=Ih
2 3 | 5/3 - 3.10/3.10/3
W104, U66, K71, C83
Quasitruncated great stellated dodecahedron Great stellatruncated dodecahedron


Truncated great icosahedron
Tiggy
V 60,E 90,F 32=12{5/2}+20{6}
χ=2, group=Ih
25/2 | 3 - 6.6.5/2
W95, U55, K60, C71


Uniform great rhombicosidodecahedron
Qrid
V 60,E 120,F 62=20{3}+30{4}+12{5/2}
χ=2, group=Ih
5/33 | 2 - 3.4.5/3.4
W105, U67, K72, C84
Quasirhombicosidodecahedron

p q r| p q r| p q r| |p q r
{3\pi\over 5}\ {\pi\over 3}\ {\pi\over 2}

Rhombicosahedron
Ri
V 60,E 120,F 50=30{4}+20{6}
χ=-10, group=Ih
2 3 (5/4 5/2) | - 4.6.4/3.6/5
W96, U56, K61, C72


Great truncated icosidodecahedron
Gaquatid
V 120,E 180,F 62=30{4}+20{6}+12{10/3}
χ=2, group=Ih
2 35/3 | - 4.6.10/3
W108, U68, K73, C87
Great quasitruncated icosidodecahedron


Great rhombidodecahedron
Gird
V 60,E 120,F 42=30{4}+12{10/3}
χ=-18, group=Ih
2 5/3 (3/2 5/4) | - 4.10/3.4/3.10/7
W109, U73, K78, C89

[edit] 5 5 2

{a\pi\over 5}\ {b\pi\over 5}\ {c\pi\over 2} Group

Spherical triangle

{\pi\over p}\ {\pi\over q}\ {\pi\over r}

p|q r q|p r r|p q q r|p p r|q p q|r
{\pi\over 5}\ {2\pi\over 5}\ {\pi\over 2}

Small stellated dodecahedron
Sissid
V 12,E 30,F 12=12{5/2}
χ=-6, group=Ih
5 | 25/2 - (5/2)5
W20, U34, K39, C43


Great dodecahedron
Gad
V 12,E 30,F 12=12{5}
χ=-6, group=Ih
5/2 | 2 5 - (55)/2
W21, U35, K40, C44


Dodecadodecahedron
Did
V 30,E 60,F 24=12{5}+12{5/2}
χ=-6, group=Ih
2 | 5 5/2 - 5.5/2.5.5/2
W73, U36, K41, C45


Small stellated truncated dodecahedron
Quitsissid
V 60,E 90,F 24=12{5}+12{10/3}
χ=-6, group=Ih
2 5 | 5/3 - 5.10/3.10/3
W97, U58, K63, C74
Quasitruncated small stellated dodecahedron Small stellatruncated dodecahedron


Truncated great dodecahedron
Tigid
V 60,E 90,F 24=12{5/2}+12{10}
χ=-6, group=Ih
25/2 | 5 - 10.10.5/2
W75, U37, K42, C47


Rhombidodecadodecahedron
Raded
V 60,E 120,F 54=30{4}+12{5}+12{5/2}
χ=-6, group=Ih
5/2 5 | 2 - 4.5/2.4.5
W76, U38, K43, C48

p q r| p q r| |p q r
{\pi\over 5}\ {3\pi\over 5}\ {\pi\over 2}

Small rhombidodecahedron
Sird
V 60,E 120,F 42=30{4}+12{10}
χ=-18, group=Ih
2 5 (3/2 5/2) | - 4.10.4/3.10/9
W74, U39, K44, C46


Truncated dodecadodecahedron
Quitdid
V 120,E 180,F 54=30{4}+12{10}+12{10/3}
χ=-6, group=Ih
2 55/3 | - 4.10.10/3
W98, U59, K64, C75
Quasitruncated dodecahedron

[edit] a b 3

[edit] 3 3 3

{a\pi\over 3}\ {b\pi\over 3}\ {c\pi\over 3} Group

Spherical triangle

{\pi\over p}\ {\pi\over q}\ {\pi\over r}

p|q r q|p r r|p q q r|p p r|q p q|r p q r| |p q r
{\pi\over 3}\ {\pi\over 3}\ {2\pi\over 3}

Octahemioctahedron
Oho
V 12,E 24,F 12=8{3}+4{6}
χ=0, group=Oh
3/23 | 3 - 3.6.3/2.6
W68, U03, K08, C37

[edit] 4 3 3

{a\pi\over 4}\ {b\pi\over 3}\ {c\pi\over 3} Group

Spherical triangle

{\pi\over p}\ {\pi\over q}\ {\pi\over r}

p|q r q|p r r|p q q r|p p r|q p q|r p q r| |p q r

[edit] 5 3 3

{a\pi\over 5}\ {b\pi\over 3}\ {c\pi\over 3} Group

Spherical triangle

{\pi\over p}\ {\pi\over q}\ {\pi\over r}

p|q r q|p r r|p q q r|p p r|q p q|r
{3\pi\over 5}\ {\pi\over 3}\ {\pi\over 3}

Great ditrigonal icosidodecahedron
Gidtid
V 20,E 60,F 32=20{3}+12{5}
χ=-8, group=Ih
3/2 | 3 5 - ((3.5)3)/2
W87, U47, K52, C61


Small ditrigonal icosidodecahedron
Sidtid
V 20,E 60,F 32=20{3}+12{5/2}
χ=-8, group=Ih
3 | 5/23 - (3.5/2)3
W70, U30, K35, C39


Great icosihemidodecahedron
Geihid
V 30,E 60,F 26=20{3}+6{10/3}
χ=-4, group=Ih
3 3 | 5/3 - 3.10/3.3.10/3
W106, U71, K76, C85


Small icosihemidodecahedron
Seihid
V 30,E 60,F 26=20{3}+6{10}
χ=-4, group=Ih
3/23 | 5 - 3.10.3/2.10
W89, U49, K54, C63


Great icosicosidodecahedron
Giid
V 60,E 120,F 52=20{3}+12{5}+20{6}
χ=-8, group=Ih
3/25 | 3 - 5.6.3/2.6
W88, U48, K53, C62

p q r| p q r| |p q r
{\pi\over 5}\ {2\pi\over 3}\ {\pi\over 3}

Small icosicosidodecahedron
Siid
V 60,E 120,F 52=20{3}+12{5/2}+20{6}
χ=-8, group=Ih
5/2 3 | 3 - 6.5/2.6.3
W71, U31, K36, C40


Small dodecicosahedron
Siddy
V 60,E 120,F 32=20{6}+12{10}
χ=-28, group=Ih
3 5 (3/2 5/4) | - 6.10.6/5.10/9
W90, U50, K55, C64

[edit] 4 4 3

{a\pi\over 4}\ {b\pi\over 4}\ {c\pi\over 3} Group

Spherical triangle

{\pi\over p}\ {\pi\over q}\ {\pi\over r}

p|q r q|p r r|p q q r|p p r|q p q|r p q r| |p q r
{\pi\over 4}\ {\pi\over 3}\ {3\pi\over 4}

Cubohemioctahedron
Cho
V 12,E 24,F 10=6{4}+4{6}
χ=-2, group=Oh
4/34 | 3 - 4.6.4/3.6
W78, U15, K20, C51


Great cubicuboctahedron
Gocco
V 24,E 48,F 20=8{3}+6{4}+6{8/3}
χ=-4, group=Oh
3 4 | 4/3 - 3.8/3.4.8/3
W77, U14, K19, C50


Cubitruncated cuboctahedron
Cotco
V 48,E 72,F 20=8{6}+6{8}+6{8/3}
χ=-4, group=Oh
3 44/3 | - 6.8.8/3
W79, U16, K21, C52
Cuboctatruncated cuboctahedron

{\pi\over 4}\ {\pi\over 4}\ {2\pi\over 3}

Small cubicuboctahedron
Socco
V 24,E 48,F 20=8{3}+6{4}+6{8}
χ=-4, group=Oh
3/24 | 4 - 4.8.3/2.8
W69, U13, K18, C38

[edit] 5 5 3

{a\pi\over 5}\ {b\pi\over 5}\ {c\pi\over 3} Group

Spherical triangle

{\pi\over p}\ {\pi\over q}\ {\pi\over r}

p|q r q|p r r|p q q r|p p r|q p q|r p q r| |p q r
{\pi\over 3}\ {2\pi\over 5}\ {3\pi\over 5}

Small dodecahemicosahedron
Sidhei
V 30,E 60,F 22=12{5/2}+10{6}
χ=-8, group=Ih
5/35/2 | 3 - 6.5/2.6.5/3
W100, U62, K67, C78


Great dodecicosahedron
Giddy
V 60,E 120,F 32=20{6}+12{10/3}
χ=-28, group=Ih
3 5/3 (3/2 5/2) | - 6.10/3.6/5.10/7
W101, U63, K68, C79


Small dodecicosidodecahedron
Saddid
V 60,E 120,F 44=20{3}+12{5}+12{10}
χ=-16, group=Ih
3/25 | 5 - 5.10.3/2.10
W72, U33, K38, C42

{\pi\over 3}\ {\pi\over 5}\ {4\pi\over 5}

Great dodecahemicosahedron
Gidhei
V 30,E 60,F 22=12{5}+10{6}
χ=-8, group=Ih
5/45 | 3 - 5.6.5/4.6
W102, U65, K70, C81


Small ditrigonal dodecicosidodecahedron
Sidditdid
V 60,E 120,F 44=20{3}+12{5/2}+12{10}
χ=-16, group=Ih
5/33 | 5 - 3.10.5/3.10
W82, U43, K48, C55


Great ditrigonal dodecicosidodecahedron
Gidditdid
V 60,E 120,F 44=20{3}+12{5}+12{10/3}
χ=-16, group=Ih
3 5 | 5/3 - 3.10/3.5.10/3
W81, U42, K47, C54

{\pi\over 5}\ {\pi\over 5}\ {2\pi\over 3}

Small dodecicosidodecahedron
Saddid
V 60,E 120,F 44=20{3}+12{5}+12{10}
χ=-16, group=Ih
3/25 | 5 - 5.10.3/2.10
W72, U33, K38, C42


Great dodecicosidodecahedron
Gaddid
V 60,E 120,F 44=20{3}+12{5/2}+12{10/3}
χ=-16, group=Ih
5/2 3 | 5/3 - 3.10/3.6/5.10/7
W99, U61, K66, C77

{\pi\over 5}\ {\pi\over 3}\ {3\pi\over 5}

Ditrigonal dodecadodecahedron
Ditdid
V 20,E 60,F 24=12{5}+12{5/2}
χ=-16, group=Ih
3 | 5/35 - (5.5/3)3
W80, U41, K46, C53


Icosidodecadodecahedron
Ided
V 60,E 120,F 44=12{5}+12{5/2}+20{6}
χ=-16, group=Ih
5/35 | 3 - 5.6.5/3.6
W83, U44, K49, C56


Small ditrigonal dodecicosidodecahedron
Sidditdid
V 60,E 120,F 44=20{3}+12{5/2}+12{10}
χ=-16, group=Ih
5/33 | 5 - 3.10.5/3.10
W82, U43, K48, C55


Icositruncated dodecadodecahedron
Idtid
V 120,E 180,F 44=20{6}+12{10}+12{10/3}
χ=-16, group=Ih
3 55/3 | - 6.10.10/3
W84, U45, K50, C57
Icosidodecatruncated icosidodecahedron

[edit] a b 5

[edit] 5 5 5

{a\pi\over 5}\ {b\pi\over 5}\ {c\pi\over 5} Group

Spherical triangle

{\pi\over p}\ {\pi\over q}\ {\pi\over r}

p|q r q|p r r|p q q r|p p r|q p q|r p q r| |p q r
{2\pi\over 5}\ {3\pi\over 5}\ {3\pi\over 5}

Great dodecahemidodecahedron
Gidhid
V 30,E 60,F 18=12{5/2}+6{10/3}
χ=-12, group=Ih
5/35/2 | 5/3 - 5/2.10/3.5/3.10/3
W107, U70, K75, C86

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu