List of uniform polyhedra by spherical triangle
From Wikipedia, the free encyclopedia
Polyhedron | |
Class | Number and properties |
---|---|
Platonic solids |
(5, convex, regular) |
Archimedean solids |
(13, convex, uniform) |
Kepler-Poinsot solids |
(4, regular, non-convex) |
Uniform polyhedra |
(75, uniform) |
Prismatoid: prisms, antiprisms etc. |
(4 infinite uniform classes) |
Polyhedra tilings | (11 regular, in the plane) |
Quasi-regular polyhedra |
(8) |
Johnson solids | (92, convex, non-uniform) |
Pyramids and Bipyramids | (infinite) |
Stellations | Stellations |
Polyhedral compounds | (5 regular) |
Deltahedra | (Deltahedra, equalatial triangle faces) |
Snub polyhedra |
(12 uniform, not mirror image) |
Zonohedron | (Zonohedra, faces have 180°symmetry) |
Dual polyhedron | |
Self-dual polyhedron | (infinite) |
Catalan solid | (13, Archimedean dual) |
There are many relations among the uniform polyhedron.
Here they are grouped by the Wythoff symbol
Contents |
[edit] Key
Image:Image |
The vertex figure can be discovered by considering the Wythoff symbol:
- p|q r - 2p edges, alternating q-gons and r-gons. Vertex figure (q.r)p.
- p|q 2 - p edges, q-gons (here r=2 so the r-gons are degenerate lines).
- 2|q r - 4 edges, alternating q-gons and r-gons
- q r|p - 4 edges, 2p-gons, q-gons, 2p-gons r-gons, Vertex figure 2p.q.2p.r.
- q 2|p - 3 edges, 2p-gons, q-gons, 2p-gons, Vertex figure 2p.q.2p.
- p q r|- 3 edges, 2p-gons, 2q-gons, 2r-gons, vertex figure 2p.2q.2r
[edit] Convex
Spherical triangle |
p|q r | q|p r | r|p q | q r|p | p r|q | p q|r | p q r| | |p q r |
---|---|---|---|---|---|---|---|---|
![]() |
![]() Tetrahedron |
Octahedron | ![]() Truncated tetrahedron |
Cuboctahedron | ||||
![]() |
![]() Octahedron |
![]() Hexahedron |
![]() Cuboctahedron |
![]() Truncated cube |
![]() Truncated octahedron |
![]() Small rhombicuboctahedron |
![]() Great rhombicuboctahedron |
![]() Snub cube |
![]() |
![]() Icosahedron |
![]() Dodecahedron |
![]() Icosidodecahedron |
![]() Truncated dodecahedron |
![]() Truncated icosahedron |
![]() Small rhombicosidodecahedron |
![]() Great rhombicosidodecahedron |
![]() Snub dodecahedron |
[edit] Non-convex
[edit] a b 2
[edit] 3 3 2
Group
Spherical triangle |
p|q r | q|p r | r|p q | q r|p | p r|q | p q|r | p q r| | |p q r |
---|---|---|---|---|---|---|---|---|
![]() |
![]() Tetrahemihexahedron |
[edit] 4 3 2
Group
Spherical triangle |
p|q r | q|p r | r|p q | q r|p | p r|q | p q|r | p q r| | |p q r |
---|---|---|---|---|---|---|---|---|
![]() |
octahedron | cube | ![]() Stellated truncated hexahedron |
![]() Uniform great rhombicuboctahedron |
![]() Small rhombihexahedron |
|||
![]() |
![]() Great truncated cuboctahedron |
|||||||
![]() |
![]() Great rhombihexahedron |
[edit] 5 3 2
Group
Spherical triangle |
p|q r | q|p r | r|p q | q r|p | p r|q | p q|r | |
---|---|---|---|---|---|---|---|
![]() |
![]() Great icosahedron |
![]() Great stellated dodecahedron |
![]() Great icosidodecahedron |
![]() Great stellated truncated dodecahedron |
![]() Truncated great icosahedron |
![]() Uniform great rhombicosidodecahedron |
|
p q r| | p q r| | p q r| | |p q r | ||||
![]() |
![]() Rhombicosahedron |
![]() Great truncated icosidodecahedron |
![]() Great rhombidodecahedron |
[edit] 5 5 2
Group
Spherical triangle |
p|q r | q|p r | r|p q | q r|p | p r|q | p q|r |
---|---|---|---|---|---|---|
![]() |
![]() Small stellated dodecahedron |
![]() Great dodecahedron |
![]() Dodecadodecahedron |
![]() Small stellated truncated dodecahedron |
![]() Truncated great dodecahedron |
![]() Rhombidodecadodecahedron |
p q r| | p q r| | |p q r | ||||
![]() |
![]() Small rhombidodecahedron |
![]() Truncated dodecadodecahedron |
[edit] a b 3
[edit] 3 3 3
Group
Spherical triangle |
p|q r | q|p r | r|p q | q r|p | p r|q | p q|r | p q r| | |p q r |
---|---|---|---|---|---|---|---|---|
![]() |
![]() Octahemioctahedron |
[edit] 4 3 3
Group
Spherical triangle |
p|q r | q|p r | r|p q | q r|p | p r|q | p q|r | p q r| | |p q r |
---|
[edit] 5 3 3
Group
Spherical triangle |
p|q r | q|p r | r|p q | q r|p | p r|q | p q|r | |
---|---|---|---|---|---|---|---|
![]() |
![]() Great ditrigonal icosidodecahedron |
![]() Small ditrigonal icosidodecahedron |
![]() Great icosihemidodecahedron |
![]() Small icosihemidodecahedron |
![]() Great icosicosidodecahedron |
||
p q r| | p q r| | |p q r | |||||
![]() |
![]() Small icosicosidodecahedron |
![]() Small dodecicosahedron |
[edit] 4 4 3
Group
Spherical triangle |
p|q r | q|p r | r|p q | q r|p | p r|q | p q|r | p q r| | |p q r |
---|---|---|---|---|---|---|---|---|
![]() |
![]() Cubohemioctahedron |
![]() Great cubicuboctahedron |
![]() Cubitruncated cuboctahedron |
|||||
![]() |
![]() Small cubicuboctahedron |
[edit] 5 5 3
Group
Spherical triangle |
p|q r | q|p r | r|p q | q r|p | p r|q | p q|r | p q r| | |p q r |
---|---|---|---|---|---|---|---|---|
![]() |
![]() Small dodecahemicosahedron |
![]() Great dodecicosahedron |
![]() Small dodecicosidodecahedron |
|||||
![]() |
![]() Great dodecahemicosahedron |
![]() Small ditrigonal dodecicosidodecahedron |
![]() Great ditrigonal dodecicosidodecahedron |
|||||
![]() |
![]() Small dodecicosidodecahedron |
![]() Great dodecicosidodecahedron |
||||||
![]() |
![]() Ditrigonal dodecadodecahedron |
![]() Icosidodecadodecahedron |
![]() Small ditrigonal dodecicosidodecahedron |
![]() Icositruncated dodecadodecahedron |
[edit] a b 5
[edit] 5 5 5
Group
Spherical triangle |
p|q r | q|p r | r|p q | q r|p | p r|q | p q|r | p q r| | |p q r |
---|---|---|---|---|---|---|---|---|
![]() |
![]() Great dodecahemidodecahedron |