Álgebra linear
Origem: Wikipédia, a enciclopédia livre.
Álgebra linear é um ramo da Matemática que estuda vetores, espaços vetoriais, transformações lineares, sistemas de equações lineares e matrizes. Todos esses itens servem para um estudo detalhado de sistemas de equações lineares. A invenção da Álgebra Linear tem origem nos estudos de sistemas de equações lineares. Não obstante o fato de a Álgebra Linear ser um campo abstrato da Matemática, ela tem um grande número de aplicações dentro e fora da Matemática.
Espaços vetoriais são um tema central na matemática moderna; assim, a álgebra linear é largamente usada em álgebra abstrata e análise funcional. A álgebra linear também tem sua representação concreta em geometria analítica.
[editar] Ver também
- corpo
- espaço vetorial
- matrizes
- equações lineares
- produto interno
- Produto tensorial
- programação linear
- Transformações lineares
- Matriz de uma transformação linear
- Forma canônica de Jordan