Метилирование ДНК
Материал из Википедии — свободной энциклопедии
Метилирование ДНК — это обратимая модификация молекулы ДНК без изменения самой нуклеотидной последовательности ДНК, что можно рассматривать как часть эпигенетической составляющей генома.
Метилирование ДНК заключается в присоединении метильной группы к цитозину в составе CpG-динуклеотида в позиции N5 пиримидинового кольца.
Метилирование ДНК считается, в основном, присущим эукариотам. У человека метилировано около 1 % геномной ДНК. В соматических клетках взрослого организма метилирование ДНК обычно происходит в CpG-динуклеотидах; метилирование ДНК вне CpG-динуклеотидов встречается в эмбриональных стволовых клетках. [1] [2]
У растений метилирование цитозина происходит как симметрично по обеим цепям (на CpG или CpNpG), так и асимметрично лишь на одной из двух цепей (на CpNpNp, где N обозначает любой нуклеотид).
Содержание |
[править] Метилирование ДНК у млекопитающих
Около 60-70 % всех CpG-динуклеотидов у млекопитающих метилированы. Неметилированные CpG-динуклеотиды сгруппированы в т. н. «CpG-островки», которые присутствуют в 5' регуляторных областях многих генов. Различные заболевания, например, рак, сопровождаются аномальным гиперметилированием CpG-островков в промоторных областях генов, что приводит к устойчивой репрессии транскрипции. Репрессия транскрипции в этом случае опосредована белками, которые способны связываться с метилированными CpG-динуклеотидами. Эти белки, называемые метилцитозин-связывающими белками, привлекают деацетилазу гистонов (HDAC) и другие факторы, участвующие в ремоделировании хроматина. Сформировавшийся комплекс может модифицировать гистоны, формируя конденсированную транскрипционно не активную структуру гетерохроматина. Влияние метилирования ДНК на структуру хроматина имеет большое значение для развития и функционирования живого организма. В частности, отсутствие метилцитозин-связывающего белка 2 (MeCP2) вследствие, например, мутации в соответствующем гене, приводит к развитию синдрома Ретта у человека; инактивация метилцитозин-связывающего доменного белка 2 (Methyl-CpG binding domain protein 2 — MBD2), который участвует в репрессии транскрипции гиперметилированных генов, отмечена при онкологических заболеваниях.
[править] Метилирование ДНК у человека
У человека за процесс метилирования ДНК отвечают три фермента, называемые ДНК метилтрансферазами 1, 3a и 3b (DNMT1, DNMT3a, DNMT3b), соответственно. Предполагается, что DNMT3a и DNMT3b — это de novo метилтрансферазы, которые осуществляют формирование паттерна метилирования ДНК на ранних стадиях развития. DNMT1 является, предположительно, метилтрансферазой, которая поддерживает метилирование ДНК на более поздних стадиях развития организма и отвечает за присоединение метильной группы на комплементарной цепи при репликации ДНК дочерней клетки. Белок DNMT3L гомологичен другим DNMT-белкам, но не имеет каталитической активности. Вместо этого, DNMT3L поддерживает de novo метилтрансферазы, способствуя связыванию этих ферментов с ДНК и стимулируя их активность.
Важным этапом в развитии злокачественных новообразований является инактивация генов-супрессоров опухолевого роста. В случае, когда инактивация была обусловлена метилированием промоторной области гена, проводились эксперименты по возобновлению экспресии путём ингибирования DNMT. 5-aza-2'-дезоксицитидин (децитабин) является нуклеозидным аналогом, ингибирующим DNMT метилтрансферазы. Механизм действия препарата основан на ковалентном связывании фермента в комплексе с ДНК, что делает невозможным выполнение ферментом своей функции и приводит к деградации метилтрансферазы. Однако для того, чтобы децитабин был активен, он должен встроиться в геном клетки, но это, в свою очередь, может вызвать мутации в дочерних клетках, если клетка не погибает и продолжает деление. К тому же, децитабин токсичен для костного мозга, что сужает область его терапевтического применения. Эти ограничения привели к интенсивному поиску методов терапевтического воздействия, основанных на использовании «антисмысловых» РНК, которые противодействуют DNMT посредством деградации её мРНК и, следовательно, блокируют трансляцию. Тем не менее, по-прежнему остаётся открытым вопрос о том, является ли ингибирование функции DNMT1 достаточным условием для увеличения экспрессии генов-супрессоров, негативная регуляция транскрипции которых осуществляется метилированием ДНК.
[править] Метилирование ДНК у растений
В последнее время произошел значительный прорыв в понимании процесса метилирования ДНК у растений, особенно у Arabidopsis thaliana. Основными метилтрансферазами ДНК у A. thaliana являются Met1, Cmt3 и Drm2, которые на уровне аминокислотной последовательности подобны вышеописанным метилтранферазам ДНК у млекопитающих. Drm2, предположительно, участвует как в de-novo метилировании ДНК, так и в поддержании метилирования на более поздних стадиях развития. Cmt3 и Met1, главным образом, выполняют функцию поддержания метилирования ДНК.[3] Прочие метилтрансферазы ДНК также присутствуют у растениях, но их функция пока не выяснена (См. [1]). Считается, что специфичность метилтрансферазы в процессе метилирования ДНК модулируется при помощи РНК. Специфичные РНК-транскрипты транскрибируются с определенных участков матрицы — геномной ДНК. Эти РНК-транскрипты могут формировать двухцепочные молекулы РНК. Двухцепочные РНК, посредством регуляторных сигнальных путей, связанных либо с малыми интерферрирующими РНК (siRNA), либо с микроРНК (miRNA), детерминируют локализацию метилтрансфераз ДНК на участках специфических нуклеотидных последовательностей в геноме.[4]
[править] Ссылки
- ↑ De novo methylation of MMLV provirus in embryonic stem cells: CpG versus non-CpG methylation // Science Direct. — 2002.
- ↑ Allele-Specific Non-CpG Methylation of the Nf1 Gene during Early Mouse Development // Science Direct. — 2001.
- ↑ Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes // PNAS. — Jul.
- ↑ RNA-directed DNA methylation in Arabidopsis // PNAS. — Dec.
[править] См. также
- Репрограммирование