De revolutionibus orbium coelestium

From Wikipedia, the free encyclopedia

Nicolai Copernici Torinensis De Revolutionibus Orbium Coelestium, Libri VI - On the Revolutions of the Heavenly Spheres, by Nicolaus Copernicus of Torin, Six Books (title page of 2nd edition, Basel, 1566)
Nicolai Copernici Torinensis De Revolutionibus Orbium Coelestium, Libri VI - On the Revolutions of the Heavenly Spheres, by Nicolaus Copernicus of Torin, Six Books (title page of 2nd edition, Basel, 1566)

De revolutionibus orbium coelestium (English: On the Revolutions of the Heavenly Spheres; German: Von den Umdrehungen der Himmelskörper; Polish: O obrotach sfer niebieskich), first printed in 1543 in Nuremberg, is the seminal work on heliocentric theory and the masterpiece of the great astronomer Nicolaus Copernicus (1473-1543). The book offers an alternative model of the universe to the Ptolemaic system.

Contents

[edit] History of the book

Copernicus initially wrote up an outline of his system in a short text called the Commentariolus. A physician's library list dating to 1514 includes a manuscript whose description matches the Commentariolus, so Copernicus must have begun work on his new system by that time. However, most historians believe that he wrote the Commentariolus after his return from Italy, and possibly only after 1510. At this time, Copernicus anticipated that he could reconcile the motion of the Earth to the perceived motions of the planets quite easily, with fewer motions than were necessary for the Alfonsine Tables, the version of Ptolemaic astronomy popular at that time.

Remarkably the manuscript of De revolutionibus in Copernicus' own hand has survived. (Autograph manuscripts of published major scientific works from this time are rare.) Close examination of the manuscript, including the different types of paper used, has helped scholars to construct an approximate time table for its composition. Apparently Copernicus began by making a few astronomical observations, to provide new data to perfect his models. He may have begun writing the book while still engaged in observations. By the 1530s a substantial part of the book was completed. But he was still completing his work (even if he was not convinced that he wanted to publish it) when in 1539 Georg Joachim Rheticus, a great mathematician from Wittenberg, arrived in Frombork. In 1542, in Copernicus' name, Rheticus published a treatise on trigonometry (later included in the second book of De revolutionibus). Under strong pressure from Rheticus, and having seen that the first general reception of his work had not been unfavorable, Copernicus finally agreed to give the book to his close friend Tiedemann Giese, bishop of Chełmno (Kulm), to be delivered to Rheticus for printing at Nürnberg (Nuremberg) and to be published just before his death, in 1543.

The major work of Copernicus is the result of decades of labor. It rewrote Ptolemaic theory for a moving earth, and incorporates over a thousand years of accounts of astronomical observations of varying accuracy. In its standard English edition, it contains 330 folio pages, 100 pages of tables, and over 20,000 tabulated numbers.

The book is dedicated to Pope Paul III (in a preface which attempts to articulate that mathematics, not physics, should be the basis for understanding and accepting his theory) and is divided into 6 parts ("books"):

  • The first part contains a general vision of the heliocentric theory, and a summarized exposition of his idea on the World.
  • The second part is mainly theoretical and describes the principles of spherical astronomy and a list of stars (as a basis for the arguments developed in the subsequent books).
  • The third part is mainly dedicated to the apparent movements of the Sun and to related phenomena.
  • The fourth part contains a similar description of the Moon and its orbital movements.
  • The fifth and the sixth parts contain the concrete exposition of the new system.

De revolutionibus starts with an anonymous foreword stating that the whole work is only a simple hypothesis, implying that it might only be fantastic speculation. It is misleading to understand hypothesis in its modern sense, a proposed law or principle that is to be tested by experiment. Rather, the word hypothesis should be understood as a convenient bit of mathematics not necessarily related at all to reality. The foreword was generally regarded as Copernicus' own idea, until Johannes Kepler showed that it was an addition by the Lutheran philosopher Osiander.

In his system Copernicus argued that the universe is made up of eight spheres. The outer, eighth sphere consisted of motionless, fixed stars with the sun motionless at the centre. The planets revolved around the Sun in the order of Mercury, Venus, Earth, Mars, Jupiter, and Saturn. The moon however, revolved around the earth. Moreover, according to him, what seemed to be the movement of the Sun and fixed stars around the earth, was really explained by the daily rotation of the earth around its own axis. Even with all of his advances, he retained the circular orbits, because of which he was forced to also retain the epicycles of the Ptolemaic system to prove his calculations correct. Nevertheless, the shift from an earth-centered, to a sun-centered system was very important and raised serious questions about Aristotle's astronomy and physics, despite Copernicus' adherence to Aristotle.

[edit] Reception among scholars

The book caused only mild controversy at the time, and provoked no fierce sermons about contradicting holy scripture; Osiander's preface, therefore, may have had some success. In 1546, however, a Dominican, Giovanni Maria Tolosani, wrote a treatise denouncing the theory and defending the absolute truth of scripture. Tolosani also claimed that Bartolomeo Spina, the Master of the Sacred Palace, had intended to condemn the theory but had been unable to press the issue because of ill health.

According to a O. Thill's 2002 update of a biography from 1654 by Pierre Gassendi, many persons, astronomers and other, knew about Copernicus' theory before 1615. Their stance is given as follows:

"Copernicans" "anti-Copernicans"
Bernard Wapowski, Tiedemann Giese, Johannes Dantiscus, Nikolaus Cardinal von Schönberg, Johann Albrecht Widmannstetter, Georg Joachim Rheticus, Heinrich Zell, Andreas Aurifaber, Achille Pirmin Gasser, Johannes Petreius, Erasmus Reinhold, Johannes Angelus, Petrus Ramus or de la Ramée, Omer Talon, Robert Record or Recorde, John Feild or Field, John Dee, Pontus de Tyard, Leonardo Botallo, Petrus Pitatus, Johannes Stadius, Regnier Gemma Frisius, Cyprianus Leovitius, David Origano or Tost, Nicodème Frischlin, Nicolao Zoravio, Brunone Seidelius, Christian Urstitius or Wursteisen, Erasmus Oswald Schreckenfuchs, Thomas Digges, Nicolaus Neodomus, Michel Eyquem de Montaigne, Valentin Steinmetz, Diego Lopez de Zuñiga or Didacus a Stunica, Giovanni Battista Benedetti, Francesco Patrizio, Bartholomäus Scultetus, John Blagrave, Jonas Petrejus Upsaliensis, Duncan Liddel, Jean-Antoine de Baïf, Bartholomaeus Keckermann, Christoph Rothmann, Joseph Justus Scaliger (the son of Julius Caesar), Paul Wittich, Valentin Otho, Jacob Christmann, Johannes Amos Comenius, William Gilbert, Giordano Bruno, Tycho Brahe, Michael Maestlin, Johannes Kepler, Joseph Gaultier, Nicolas Fabri de Peiresc, Pierre Gassendi, Pierre de Bérulle, Elia Diodati, Matthias Bernegger, Marin Mersenne, René Descartes, Nicolaus Mulerius, etc. Paul Eber, Philipp Melanchthon, Martin Luther, Jean Calvin, Giovanni Maria Tolosani, Julius Caesar Scaliger, Jorgen Christoffersen Dibvardius or Dybbard, Francesco Maurolico, Jean Bodin, Guillaume de Saluste du Bartas, Wilhelm Misocacus, Francesco Barozzi or Barocius, Thomas Blundeville, Johannes Laurentius Gevaliensis, Lambert Danneau, Jacopo Mazzoni, François Viète, George Buchanan, Giulio Cesare LaGalla, Giovanni Antonio Magini, Jean-Baptiste Morin, Christopher Clavius, etc.

Identification of "Copernicans" or "anti-Copernicans" will vary depending on the criteria used. For instance, Gassendi apparently considered Tycho Brahe to be a supporter of Copernicus, even though Tycho plainly believed that the Earth did not move.

It has been much debated why sixty years would pass before Copernicus' work would come under serious attack. The alleged reasons range from the personality of Galileo Galilei to the availability of actual evidence (such as observations with the telescope) which could make it practical for the first time to settle the truth or falsity of the theory. Whatever the reason, in 1616 Cardinal Bellarmine gave Galileo an order from the Pope to take the position that the system was purely hypothesis. After that, De revolutionibus was placed on the Index of Forbidden Books along with two less important works (but none of Galileo's, at that time). It was not formally banned but merely withdrawn from circulation pending "corrections" which would clarify the status of the theory as hypothesis (nine sentences, by which the heliocentric system was represented as certain, had to be either omitted or changed). Such corrections were prepared by Francesco Ingoli and others, and were formally approved in 1620; the reading of the book was then allowed.[1] But the book was never reprinted with these changes, and was available in Catholic jurisdictions only by special request of suitably qualified scholars.citation needed It remained on the Index until 1758, when Benedict XIV (1740-58) removed the uncorrected book from his revised Index.[2] A few years after the death of Copernicus, Erasmus Reinhold developed the Tabulae prutenicae (Prutenic Tables, German Prutenische Tafeln), based on Copernicus' observations. Reinhold's Prutenic Tables were used as a basis for the calendar reform instituted under Pope Gregory XIII. The tables were also used by sailors and sea explorers, who during the fourteenth and fifteenth centuries had used the Table of the Stars by Regiomontanus.

[edit] Recent research

For a long time, historians believed that the book was not widely read at the time of its first publication. Owen Gingerich, a widely recognized authority on both Nicolaus Copernicus and Johannes Kepler, disproved that belief after a 35-year long project to examine every surviving copy of the original book. His efforts and conclusions are recounted in The Book Nobody Read, published in 2004 by Walker & Co. That book and the research behind it earned the Polish government's Order of Merit in 1981. Due largely to Dr. Gingerich's scholarship, De revolutionibus has been researched and cataloged better than any first-edition historical text except for the original Gutenberg Bible.[3]

[edit] See also

[edit] References

  1. ^ "Nicolaus Copernicus," Catholic Encyclopedia. http://www.newadvent.org/cathen/04352b.htm.
  2. ^ "Benedict XIV." Catholic Encyclopedia. http://www.newadvent.org/cathen/04352b.htm
  3. ^ Peter DeMarco. "Book quest took him around the globe". Boston Globe. April 13, 2004

[edit] Bibliography

  • O. Gingerich: An annotated census of Copernicus' De revolutionibus (Nuremberg, 1543 and Basel, 1566). Leiden : Brill, 2002 ISBN 90-04-11466-1 (Studia copernicana. Brill's series; v. 2)
  • O. Gingerich: The Book Nobody Read : Chasing the Revolutions of Nicolaus Copernicus. New York : Walker, 2004 ISBN 0-8027-1415-3
  • E. Zinner: Entstehung und Ausbreitung der coppernicanischen Lehre. 2. Aufl. durchgesehen und erg. von Heribert M. Nobis und Felix Schmeidler. München : C.H. Beck, 1988 ISBN 3-406-32049-X
  • R.S. Westman, ed.: The Copernican achievement. Berkeley : University of California Press, 1975 ISBN 0-520-02877-5
  • N.M. Swerdlow, O. Neugebauer: Mathematical astronomy in Copernicus's De revolutionibus. New York : Springer, 1984 ISBN 0-387-90939-7 (Studies in the history of mathematics and physical sciences ; 10)
  • J.L. Heilbron: The Sun in the Church: Cathedrals as Solar Observatories. Cambridge, Massachusetts, Harvard University Press, 1999 ISBN 0-674-85433-0
  • The Life of Copernicus, biography (1654) by Pierre Gassendi, with notes by Olivier Thill (2002), ISBN 1-59160-193-2 [1]
  • R.H. Vermij: The Calvinist Copernicans: The Reception of the New Astronomy in the Dutch Republic, 1575-1750. Amsterdam : Koninklijke Nederlandse Akademie van Wetenschappen, 2002 ISBN 90-6984-340-4 [2]

[edit] English translations of De revolutionibus

  • On the revolutions of the heavenly spheres [translated] with an introd. and notes by A. M. Duncan. Newton Abbot : David & Charles; New York : Barnes and Noble, 1976 ISBN 0-7153-6927-X (David & Charles) ISBN 0-06-491279-5 (Barnes and Noble)
  • On the revolutions ; translation and commentary by Edward Rosen. Baltimore : Johns Hopkins University Press, 1992 ISBN 0-8018-4515-7 (Foundations of natural history) (originally published Warsaw, 1978)
  • On the revolutions of the heavenly spheres ... transl. by C.G. Wallis. (First published Annapolis : St John's Bookstore, 1939. Later republished in v. 15 of the series Great Books of the Western World (Chicago : Encyclopaedia Britannica, 1952) and in the series of the same name published by the Franklin Library, Franklin Center, Philadelphia, 1985 and also in 1995 by Prometheus Books (Amherst, NY.) in its Great minds series - Science (ISBN 1-57392-035-5)

[edit] Links