Physicist

From Wikipedia, the free encyclopedia

Editing of this article by unregistered or newly registered users is currently disabled. If you are prevented from editing this article, and you wish to make a change, please discuss changes on the talk page, request unprotection, log in, or create an account.

Physicists working in a government lab
Physicists working in a government lab

A physicist is a scientist who studies or practices physics. Physicists study a wide range of physical phenomena spanning all length scales: from the sub-atomic particles from which all ordinary matter is made (particle physics) to the behavior of the material Universe as a whole (cosmology). There are numerous branches of physics and each has its corresponding specialists.

Contents

Education

Nearly all the material a student encounters in the undergraduate physics curriculum is based on discoveries and insights of a century or more in the past. Newton’s laws of motion were formulated in the 1600’s; Maxwell's equations, 1800’s; and quantum mechanics, early 1900’s. The undergraduate physics curriculum generally includes the following range of courses: chemistry, classical physics, astronomy, physics laboratory, electricity and magnetism, optics, modern physics, quantum physics, nuclear physics, solid state physics. Undergraduate physics students must also take extensive mathematics courses (calculus, differential equations, advanced calculus), and computer science and programming. Undergraduate physics students often perform research with faculty members.

Many positions, especially in research, require a doctoral degree. At the Master's level and higher, students tend to specialize in a particular field. Fields of specialization include experimental and theoretical astrophysics, atomic physics, molecular physics, biophysics, chemical physics, geophysics, material science, nuclear physics, optics, particle physics, and plasma physics. Post-doctorate experience may be required for certain positions.


University-level physics textbooks

Survey texts

  • Feynman, Richard. Exercises for Feynman Lectures Volumes 1-3. Caltech. ISBN 2-35648-789-1. 
  • Knight, Randall (2004). Physics for Scientists and Engineers: A Strategic Approach. Benjamin Cummings. ISBN 0-8053-8685-8. 
  • Halliday, David; Resnick, Robert; Walker, Jearl. Fundamentals of Physics 7th ed. ISBN 0-471-21643-7. 
  • Hewitt, Paul (2001). Conceptual Physics with Practicing Physics Workbook (9th ed.). Addison Wesley. ISBN 0-321-05202-1. 
  • Giancoli, Douglas (2005). Physics: Principles with Applications (6th ed.). Prentice Hall. ISBN 0-13-060620-0. 
  • Serway, Raymond A.; Jewett, John W. (2004). Physics for Scientists and Engineers (6th ed.). Brooks/Cole. ISBN 0-534-40842-7. 
  • Tipler, Paul (2004). Physics for Scientists and Engineers: Mechanics, Oscillations and Waves, Thermodynamics (5th ed.). W. H. Freeman. ISBN 0-7167-0809-4. 
  • Tipler, Paul (2004). Physics for Scientists and Engineers: Electricity, Magnetism, Light, and Elementary Modern Physics (5th ed.). W. H. Freeman. ISBN 0-7167-0810-8. 
  • Wilson, Jerry; Buffa, Anthony (2002). College Physics (5th ed.). Prentice Hall. ISBN 0-13-067644-6. 

Undergraduate texts on specific topics

  • Thornton, Stephen T.; Marion, Jerry B. (2003). Classical Dynamics of Particles and Systems (5th ed.). Brooks Cole. ISBN 0-534-40896-6. 
  • Wangsness, Roald K. (1986). Electromagnetic Fields (2nd ed.). Wiley. ISBN 0-471-81186-6. 
  • Fowles, Grant R. (1989). Introduction to Modern Optics. Dover Publications. ISBN 0-486-65957-7. 
  • Schroeder, Daniel V. (1999). An Introduction to Thermal Physics. Addison Wesley. ISBN 0-201-38027-7. 
  • Kroemer, Herbert; Kittel, Charles (1980). Thermal Physics (2nd ed.). W. H. Freeman Company. ISBN 0-7167-1088-9. 
  • Schutz, Bernard F. (1984). A First Course in General Relativity. Cambridge University Press. ISBN 0-521-27703-5. 
  • Bergmann, Peter G. (1976). Introduction to the Theory of Relativity. Dover Publications. ISBN 0-486-63282-2. 
  • Tipler, Paul; Llewellyn, Ralph (2002). Modern Physics (4th ed.). W. H. Freeman. ISBN 0-7167-4345-0. 
  • Perkins, Donald H. (1999). Introduction to High Energy Physics. Cambridge University Press. ISBN 0-521-62196-8. 
  • Povh, Bogdan (1995). Particles and Nuclei: An Introduction to the Physical Concepts. Springer-Verlag. ISBN 0-387-59439-6. 
  • Menzel, Donald Howard (1961). Mathematical Physics. Dover Publishications. ISBN 0-486-60056-4. 
  • Joos, Georg; Freeman, Ira M. (1987). Theoretical Physics. Dover Publications. ISBN 0-486-65227-0. 

Graduate texts

  • Landau, L. D.; Lifshitz, E. M. (1976). Course of Theoretical Physics. Butterworth-Heinemann. ISBN 0-7506-2896-0. 
  • Morse, Philip; Feshbach, Herman (2005). Methods of Theoretical Physics. Feshbach Publishing. ISBN 0-9762021-2-3. 
  • Arfken, George B.; Weber, Hans J. (2000). Mathematical Methods for Physicists (5th ed.). Academic Press. ISBN 0-12-059825-6. 
  • Jackson, John D. (1998). Classical Electrodynamics (3rd ed.). Wiley. ISBN 0-471-30932-X. 
  • Huang, Kerson (1990). Statistical Mechanics. Wiley, John & Sons, Inc. ISBN 0-471-81518-7. 
  • Merzbacher, Eugen (1998). Quantum Mechanics. Wiley, John & Sons, Inc. ISBN 0-471-88702-1. 
  • Peskin, Michael E.; Schroeder, Daniel V. (1994). Introduction to Quantum Field Theory. Perseus Publishing. ISBN 0-201-50397-2. 
  • Wald, Robert M. (1984). General Relativity. University of Chicago Press. ISBN 0-226-87033-2. 

Employment

The three major employers of career physicists are academic institutions, government laboratories, and private industry, with the largest employer being the last. [1] Many people who are trained as physicists, however, use their skills in other parts of the economy, in particular in engineering, computing, and finance. Some physicists take up careers where their knowledge of physics can be combined with further training in other disciplines, such as patent attorney in industry or private practice. In the United States, a majority of those in the private sector with a physics degree work outside physics, astronomy and engineering altogether. [2]

See also

Albert Einstein, One of the world's most well known physicists
Albert Einstein, One of the world's most well known physicists

Further reading

External links

References

  1. ^ AIP Statistical Research Center. Initial Employment Report, Fig. 7. Retrieved on 21 Aug, 2006. Also relevant is: Institute of Physics. Education Statistics, Graph 4.11. Retrieved on 21 Aug, 2006.
  2. ^ AIP Statistical Research Center. Initial Employment Report, Table 1. Retrieved on 21 Aug, 2006.