اصل پنجم اقلیدس
از ویکیپدیا، دانشنامهٔ آزاد.
اصل پنجم اقلیدس
اقلیدس در کتاب اصول اقلیدس هنگامی که بنیاد هندسهیی را میگذاشت، که به مدت بیش از دو هزار سال تنها هندسهٔ موجود بود، پنج اصل موضوع و پنج اصل متعارفی را به عنوان اصول بدیهی و بدون نیاز به اثبات پذیرفت تا بتواند بقیه قضایای هندسی را اثبات کند. اصل پنجم آنگونه که اقلیدس بیان کرد اینگونه است: اگر دو خط راست بهوسیلهٔ یک خط سوم قطع شوند، در همان طرفی از خط سوم که زوایای داخلی، مجموع کوچکتر از دوقائمه تشکیل میدهند یکدیگر را قطع میکنند. این اصل در شکل امروزی آن اینگونه بیان میشود: اگر دو خط به وسیلهٔ موربی چنان قطع شوند که مجموع اندازهٔ درجههای دو زاویهٔ درونی واقع در یک طرف مورب کمتر از 180 درجه باشد، آنگاه این دو خط یکدیگر را در همان طرف مورب تلاقی میکنند. شکل مشهورتر این اصل که امروزه در دبیرستان تدریس میشود و به اصل توازی اقلیدسی مشهور است عبارت است از: به ازای هر خط l و نقطهٔ p غیر واقع بر آن تنها یک خط مانند m وجود دارد چنانچه از p میگذرد و با l موازی است.
این اصل را به این شکل نخستین بار جیرولامو ساکری طرح کرد.
چند جانشین دیگر برای این اصل پیشنهاد شده است:
- حداقل یک مثلث وجود دارد که مجموع سه زاویهٔ آن برابر با 180 درجه است.
- دو مثلث متشابه غیر متساوی وجود دارند.
- دو خط مستقیم وجود دارند که همه جا از هم به یک فاصلهاند.
- بر هر سه نقطهٔ غیر واقع بر یک خط میتوان دایرهای گذراند.
- بر هر نقطهٔ داخل زاویهای کمتر از 60 درجه میتوان خط مستقیمی کشید که هر دو ضلع زاویه را قطع کند.
برای اصلاع بیشتر به اصل پلیفیر و اصل توازی اقلیدسی و اصل توازی هیلبرت مراجعه کنید.
[ویرایش] منابع
- پرویز شهریاری، هندسه در گذشته و حال، انتشارات سیمرغ
- گرینبرگ، ماروین جی،هندسههای اقلیدسی و نااقلیدسی، ترجمهی: م.ه. شفیعیها، مرکز نشر دانشگاهی.
- هاورد و. ایوز، آشنایی با تاریخ ریاضیات (جلد دوم)، ترجمهٔ محمدقاسم وحیدیاصل، مرکز نشر دانشگاهی.