New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Aproximace - Wikipedie, otevřená encyklopedie

Aproximace

Z Wikipedie, otevřené encyklopedie

Aproximace označuje v matematice přibližnou hodnotu čísla nebo jednu z možných hodnot čísla, nebo také nahrazení čísla vhodným číslem blízkým.

V tomto smyslu má přídavné jméno aproximativní význam přibližný.

V geometrii se jedná o proložení několika bodů křivkou, přičemž není nutné, aby aproximační křivka přesně procházela zadanými body. (Na rozdíl od interpolace.)

Obsah

[editovat] Příklad

Např. Ludolfovo číslo lze za určitých okolností nahradit (aproximovat) hodnotou \frac{22}{7}. Aproximace čísla π je tedy \frac{22}{7}.

[editovat] Přibližné vztahy využívající Taylorova rozvoje

Podrobnější informace naleznete v článku Taylorova řadanaleznete v článcích [[{{{2}}}]] a [[{{{3}}}]]naleznete v článcích [[{{{4}}}]], [[{{{5}}}]] a [[{{{6}}}]]naleznete v článcích [[{{{7}}}]], [[{{{8}}}]], [[{{{9}}}]] a [[{{{10}}}]].

Mnohé aproximace jsou založeny na rozvoji dané funkce v Taylorovu řadu a následném zanedbání vyšších členů rozvoje. Přesnost aproximace pak souvisí s počtem členů, které jsou použity.

Mezi často používané přibližné vztahy patří např.

\frac{(1\pm x_1)(1\pm x_2)\cdots(1\pm x_n)}{(1\pm y_1)(1\pm y_2)\cdots(1\pm y_n)} \approx 1 \pm x_1 \pm x_2 \pm \cdots \pm x_n \mp y_1 \mp y_2 \mp \cdots \mp y_n

Speciálními případy jsou pak vztahy

(1\pm x_1)(1\pm x_2)\cdots(1\pm x_n) \approx 1\pm x_1 \pm x_2 \pm \cdots \pm x_n
\frac{1}{(1\pm y_1)(1\pm y_2)\cdots(1\pm y_n)} \approx 1 \mp y_1 \mp y_2 \mp \cdots \mp y_n
  • Z předchozích vztahů lze pro n-tou mocninu získat vztah (stejný vztah lze získat z binomické věty zanedbáním členů obsahujících vyšší mocniny x)
{(1\pm x)}^n \approx 1 \pm nx
  • Pro n-tou odmocninu lze nalézt přibližný výraz
\sqrt[n]{1\pm x} \approx 1\pm \frac{x}{n}
  • Pro dvě kladná a blízká čísla x a y taková, že čtverec jejich rozdílu (xy)2 lze zanedbat proti čtverci jejich součtu (x + y)2, lze psát
{(x+y)}^2 \approx 4xy
\sqrt{xy} \approx \frac{x+y}{2}

[editovat] Přibližné výrazy goniometrických funkcí

Pro malý úhel \alpha\neq 0 a libovolný úhel β lze pro goniometrické funkce použít následující přibližné vztahy.

  • \sin\alpha \approx \alpha

s relativní chybou menší než 0,1% pro |\alpha|<0,08\,\mbox{rad} neboli 4,5^\circ. Přesnějším přiblížením je

\sin\alpha\approx\alpha - \frac{\alpha^3}{6}

s relativní chybou menší než 10 − 5 pro |\alpha|<0,25\,\mbox{rad} neboli 14^\circ.

  • \cos\alpha \approx 1

s relativní chybou menší než 0,1% pro |\alpha|<0,04\,\mbox{rad} neboli 2,3^\circ. Přesnějším přiblížením je

\cos\alpha\approx 1 - \frac{\alpha^2}{2}

s relativní chybou menší než 10 − 4 pro |\alpha|<0,25\,\mbox{rad} neboli 14^\circ.

  • \operatorname{tg}\alpha\approx\alpha

s relativní chybou menší než 0,1% pro |\alpha|<0,06\,\mbox{rad} neboli 3,4^\circ. Přesnějším přiblížením je

\operatorname{tg}\alpha\approx\alpha+\frac{\alpha^3}{3}

s relativní chybou menší než 5\cdot{10}^{-4} pro |\alpha|<0,25\,\mbox{rad} neboli 14^\circ.

  • \alpha\sin\alpha\approx 1

s relativní chybou menší než 0,1% pro |\alpha|<0,017\,\mbox{rad} neboli 1,008^\circ.

  • \sin(\beta\pm\alpha)\approx\sin\beta\pm\alpha\cos\beta
  • \cos(\beta\pm\alpha)\approx\cos\beta\mp\alpha\sin\beta
  • \operatorname{tg}(\beta\pm\alpha)\approx\operatorname{tg}\beta\pm\alpha\cos{2\beta}
  • \operatorname{cotg}(\beta\pm\alpha)\approx\operatorname{cotg}\beta\mp\alpha\sin{2\beta}

[editovat] Podívejte se také na

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu