Axiom závislého výběru
Z Wikipedie, otevřené encyklopedie
Axiom závislého výběru (zkráceně (DC) – „dependent choice“) je matematické tvrzení z oblasti teorie množin, které je slabší verzí axiomu výběru.
Obsah |
[editovat] Znění
Axiom závislého výběru lze vyslovit v kterékoli z běžně používaných axiomatizací teorie množin (ZF, NBG či KM) a to například takto:
Nechť X je množina a R binární relace na X splňující . Pak existuje posloupnost
prvků X, že
pro všechna
.
[editovat] Důsledky
Z (DC) vyplývá axiom spočetného výběru, a tedy i všechny jeho důsledky. Dále z (DC) plyne například existence neměřitelné množiny nebo množiny reálných čísel, která nemá Bairovu vlastnost.
[editovat] Vztah k podobným axiomům
(DC) je důsledkem (obyčejného) axiomu výběru (AC), je ostře slabší (tj. (DC) neimplikuje (AC)). Naopak z (DC) vyplývá axiom spočetného výběru, který je ostře slabší než (DC).