Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Lagrange-punkt - Wikipedia, den frie encyklopædi

Lagrange-punkt

Fra Wikipedia, den frie encyklopædi

De fem lagrange-punkter i forhold til de to himmellegemer.
De fem lagrange-punkter i forhold til de to himmellegemer.

Et Lagrange-punkt (også omtalt som L-punkt eller librationspunkt) er positioner i tilknytning til to himmellegemers omløbsbaner omkring hinanden, hvor et tredje legeme (som skal have forsvindende lille masse sammenlignet med de to øvrige legemer) kan forblive stabilt i, uden at centrifugalkraften eller de andre legemers tyngdekraft trækker det væk fre denne position. Der findes fem sådanne punkter, og de benævnes L1 til L5.

Indholdsfortegnelse

[redigér] Historisk baggrund

I 1772 arbejdede den italienske matematiker Joseph Louis Lagrange på at finde "pæne", analytiske løsninger på hvordan tre eller flere himmellegemer vil bevæge sig i forhold til hinanden. Knap et århundrede forinden havde Isaac Newton grundlagt det matematiske grundlag for himmelmekanikken ved at beregne hvordan to legemer kan bevæge sig i forhold til hinanden. Men så snart der er mere end to legemer "inde i billedet", bliver regnestykket kaotisk; modsat Newtons tolegemeproblem gives der ikke nogle generelle formler for hvordan legemerne kan bevæge sig.

Lagrange fandt aldrig de søgte, generelle løsninger. Det er ikke lykkedes for nogen indtil nu, og dette mere end antyder at der ikke findes nogen generel, matematisk beskrivelse af løsningerne for tre eller flere legemer. Til gengæld fandt han nogle bestemte, stabile "situationer" — herunder nogle punkter hvor et tredje legeme, meget mindre end de to øvrige legemer, kan forblive stabilt over længere tid, og disse punkter er nu opkaldt efter ham.

[redigér] L1

Det første Lagrange-punkt ligger et sted på linien imellem de to store legemer, og "følger med" i de store legemers kredsbevægelse, så det har samme omløbstid. Med Jorden og Solen i rollerne som de to store legemer ligger punktet L1 i ca. halvanden million kilometers afstand fra Jorden, i retningen direkte mod Solen. Fra dette punkt er der altid fri og uhindret "udsigt" til Solen, og derfor er rumfartøjet "SOHO" (Solar and Heliospheric Observatory) placeret i umiddelbar nærhed af dette punkt.

Normalt "burde" et legeme der omkredser Solen i en omløbsbane tættere på denne end Jordens bane er, gennemføre et kredsløb på mindre end et jordisk år. Men Jordens tyndekraft giver et legeme i punktet L1 et "ekstra løft" væk fra Solen, så det kan bibeholde sit kredsløb til trods for dets "for lange" omløbstid.

[redigér] L2

Det andet Lagrange-punkt ligger som L1 på forbindelseslinjen mellem de to store legemer, men på den modsatte side af det mindste af de to store legemer. Er der stor forskel på de to store legemers masser, ligger L1 og L2 lige langt fra det mindste af de to store legemer, blot på hver sin side. Man har i Jordens/Solens L2-punkt allerede placeret et rum-observatorium kaldet Wilkinson Microwave Anisotropy Probe, og påtænker at anbringe en hel flotille af rum-observatorier herunder rum-teleskopet James Webb Space Telescope ved samme punkt.

Et legeme med en større omløbsbane omkring Solen end Jordens ville normalt have en længere omløbstid end det år det tager Jorden at fuldføre et omløb; Jordens tyngdekraft øver et ekstra træk i retning ind mod Solen, således at et legeme kan forblive i dette punkt.

[redigér] L3

Det tredje Lagrange-punkt ligger som L1 og L2 på linie med de to store legemer, men på den side af det største af de to store legemer der vender væk fra det mindre, i en afstand lidt større end afstanden mellem de to store legemer.

På baggrund af Lagranges arbejde forestillede man sig en overgang en hypotetisk planet ved dette punkt; en sådan planet ville jo hele tiden "gemme sig" for jordiske observatører bag ved Solen. Denne idé er siden hen blevet skrinlagt, fordi Jordens ikke helt cirkelformede omløbsbane fra tid til anden ville bringe en sådan planet frem af dens "skjul".

Bruges Jorden og Solen som eksempel, så kan et legeme "holde" sin 1 år lange omløbstid i en lidt større afstand fra Solen end Jorden, fordi det påvirkes ikke kun af Solens, men også af Jordens tyndekraft, om end Jordens andel af det samlede "træk" her vil være temmelig beskeden.

[redigér] L4 og L5

De to Lagrange-punkter L4 og L5 befinder sig på steder langs det mindre af de to store legemers bane om det største; til stadighed 60 grader "foran" (L4) og "bag ved" (L5) det mindre legeme.

I tilfældet med Solen og Jupiter som de to store legemer findes der i L4 og L5 i forhold til Jupiter en række småplaneter, kaldet de trojanske asteroider. Og blandt Saturns måner findes to eksempler på større måner der "deler omløbsbane" med hver to betragteligt mindre måner; de små måner ligger i punkterne L4 og L5 i forhold til den større månes omløb om Saturn.

I de to L4- og L5-punkter i Månens bane, er der observeret en del støv. I 1977 skrev Gerald O'Neill The High Frontier (Rumkolonier på dansk), hvori han forestillede sig, at man samlede nogle kæmpemæssige rum-øer kredsende om L5.

[redigér] Stabilitet

Kendetegnende for alle Lagrange-punkter er, at de eksisterer helt uanset det indbyrdes forhold mellem de to store legemers masser. Desuden vil legemer i disse positioner være stabile; skulle de af den ene eller den anden grund blive flyttet en anelse væk fra den præcise lokalitet for Lagrange-punkterne, vil inertien og de store legemers tyngdekraft søge at bringe dem tilbage mod punktet. Dog vil legemet i så fald "skyde forbi" Lagrange-punktet - af den grund kan smålegemer i umiddelbar nærhed af et Lagrange-punkt kredse omkring punktet. Flere smålegemer med ubetydelig masse kan således kredse omkring det samme punkt, jævnfør de talrige trojanske asteroider.

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu