Potens (matematik)
Fra Wikipedia, den frie encyklopædi
- For alternative betydninger, se Potens.
Indenfor matematik er potens, eller potensopløftning en regneoperation på linje med addition, subtraktion, multiplikation og division. Der findes to forskellige definitioner på hvordan en potensopløftning udføres, og ifølge den enkleste af disse er en potens produktet af det samme tal, x, gentaget y gange, altså:
hvor x omtales som roden, basen eller grundtallet, og y kaldes for potenseksponenten eller bare eksponenten.
Indholdsfortegnelse |
[redigér] Notation
Skrivemåden xy læses som x i y 'ende potens, dvs. grundtallet x siges som et mængdetal, mens eksponenten y siges som et ordenstal. For eksempel:
- 74 læses Syv i fjerde potens (eller blot Syv i fjerde), og det beregenes som 7·7·7·7 = 2401.
- 23 læses To i tredje potens, eller To i tredje, og beregnes sådan her: 2·2·2 = 8.
- 210 læses Enogtyve i nulte potens og er lig med 1. Dette kan f.eks. udledes som 211*21-1==1.
På computere bruger man i visse situationer en lidt anden skrivemåde, fordi skrivemåden med eksponenten i superscript ("hævet tekst") er utilgængelig eller besværlig at bruge: I f.eks. programmeringssprog og regneark skrives regneoperationen xy som x^y, x↑y eller x**y.
[redigér] Matematisk definition
Der findes to forskellige definitioner på hvordan man beregner xy: Den definition der er nævnt i indledningen gælder i sig selv kun for en positiv heltallig eksponent y, men den kan "udbygges" til at gælde for alle heltallige eksponenter, inklusiv 0 og negative tal, og den gælder for ethvert reelt grundtal x.
Den anden metode involverer den naturlige eksponentialfunktion og den naturlige logaritme, som infinitesimalregningen fastlægger en definition på: Den gør det muligt at beregne en potens xy hvor grundtallet x kan være ethvert positivt reelt tal, og eksponenten y ethvert reelt tal. Til gengæld slår denne metode fejl hvis man prøver at bruge den i situationer hvor grundtallet x er et negativt tal.
Tilsammen fastlægger disse to definitioner hvordan man beregner xy så længe enten grundtallet x ikke er negativt, eller eksponenten y er et helt tal.
[redigér] Potenser med heltallige eksponenter
Så længe eksponenten er et positivt heltal, gælder den beskrivelse der er nævnt i indledningen, og denne regneoperation kan man udføre på enhver værdi af roden x. Hvis x er negativ, gælder iøvrigt, at når eksponenten y er lige, bliver xy et positivt tal, mens ulige rodeksponenter giver et negativt tal.
Hvis man multiplicerer ("ganger") et tal med 1, får man tallet selv: Man kan altså uden videre skrive definitionen fra indledningen om til
Nu giver det mening at tale om potenser med eksponenten y = 0; hvis man undlader at multiplicere med x (eller: "gør det nul gange"), er blot éttallet tilbage. Deraf følger, at
- x0 = 1 for alle værdier af x.
Når man beregner , får man mellemresultater der er stigende eksponenter af x for hver gang man multiplicerer med x. Omvendt kan man "fortryde" en multiplikation med x ved at dividere med x og derved reducere mellemresultatets potenseksponent med 1. Denne "fortrydelsesret" kan udnyttes til at udvide definitionen til også at omfatte negative heltal:
[redigér] Potenser med reelle eksponenter
Ved hjælp af infinitesimalregningen kan man fastlægge én ganske bestemt eksponentiel funktion; den såkaldte naturlige eksponentialfunktion, ey, hvor e er en matematisk konstant. Den gør det i første omgang muligt at beregne en potens med grundtallet e og ethvert reelt tal x.
Tilsvarende definerer infinitesimalregningen den inverse funktion til ey, nemlig den naturlige logaritme, og ved hjælp af disse to funktioner kan man definere potensen xy for ethvert positivt, reelt grundtal x og enhver reel eksponent y:
Bemærk at der ikke direkte findes funktionsforskrift for den naturlige logaritme og eksponentialfunktion; en formel der giver et eksakt svar på hvad ey er for en given eksponent y. Computere og lommeregnere bruger taylorpolynomier og andre metoder til at finde en tilnærmet værdi når de skal regne med disse to funktioner.
[redigér] Regneregler for potenser
Af definitionerne kan man udlede et antal regneregler for potenser, som bl.a. kan bruges ved løsning af ligninger. Følgende gælder for de særtilfælde hvor enten grundtallet eller eksponenten er 0:
- Hvis grundtallet er nul, er resultatet altid nul, bortset fra tilfældet hvor eksponenten er lig 0 (nævnt nedenfor): 0y = 0
- Alle grundtal giver resultatet 1 hvis eksponenten er 0: x0 = 1
Produktet og kvotienten af to potenser med samme grundtal kan samles i én potens, hvori eksponenten er hhv. summen og differensen af de to oprindelige eksponenter:
Hvis man lader en potens indgå som grundtal i en ny potens, kan man også samle det i én potensberegning, idét
Produktet af to potenser med samme eksponent kan samles i én potensudregning:
Logaritmen til en potens kan skrives som produktet af eksponenten og logaritmen til grundtallet i potensen. Dette gælder helt uanset logaritmens grundtal:
Kvadratroden, kubikroden og mere generelt "den n'te rod" af et tal, kan beskrives som potensopløftninger, idét