Wedge-Produkt
aus Wikipedia, der freien Enzyklopädie
Die Artikel Wedge-Produkt und Keilprodukt überschneiden sich thematisch. Hilf mit, die Artikel besser voneinander abzugrenzen oder zu vereinigen. Die Diskussion über diese Überschneidungen findet hier statt. Bitte äußere dich dort, bevor du den Baustein entfernst. DerGrosse 19:46, 26. Okt. 2006 (CEST) |
Mit dem Wedge-Produkt (nach wedge engl. Keil; auch Einpunktvereinigung oder Bouquet genannt) zweier punktierter topologischer Räume X und Y bezeichnet man ihre disjunkte Vereinigung, die an einem Punkt (dem Basispunkt) verklebt ist. Formal ist die Definition wie folgt:
Hierbei bezeichnet pt den jeweiligen Basispunkt.
Die Konstruktion kann man auch auf eine beliebige Menge von Räumen verallgemeinern:
Abstrakter kann man das Wedge-Produkt als das Koprodukt in der Kategorie der punktierten topologischen Räume auffassen.
[Bearbeiten] Rolle in der algebraischen Topologie
Das Wedge-Produkt verhält sich gut bezüglich einiger Funktoren in der algebraischen Topologie. Zum Beispiel gilt für die Fundamentalgruppe
wobei * das freie Produkt der Gruppen bezeichnet.
In der singulären Homologie gilt: