New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
6-polytope - Wikipedia, the free encyclopedia

6-polytope

From Wikipedia, the free encyclopedia

In geometry, a six-dimensional polytope, or 6-polytope, is a polytope in 6-dimensional space. Each polychoral ridge being shared by exactly two 5-polytope facets.

A proposed name for 6-polytope is polypeton (plural: polypeta), created from poly-, peta- and -on.

Contents

[edit] Regular and Uniform polypeta by fundamental Coxeter groups

Regular polypeta can be be generated from Coxeter groups represented by the Schläfli symbol {p,q,r,s,t} with t {p,q,r,s} polyteron facets around each cell.

Uniform polypeta can be generated by fundamental finite Coxeter groups.

There are four fundamental finite Coxeter groups that generate regular and uniform 6-polytopes, two linear and two bifurcating:

  1. A6 [3,3,3,3,3] - Image:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.png
    • 35 uniform polypeta as permutations of rings in the group diagram, including one regular:
      1. {3,3,3,3,3} - heptapeton, 6-simplex, Image:CDW_ring.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.png
        • It has 7 vertices, 21 edges, 35 faces, 35 cells, 21 hypercells, and 7 5-faces/facets. All elements are simplexes.
  2. C6 [4,3,3,3,3] - Image:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.png
    • 63 uniform truncations as permutations of rings in the group diagram, including two regular ones:
      1. {4,3,3,3,3} - hexeract or 6-hypercube Image:CDW_ring.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.png
        • It has 64 vertices, 192 edges, 240 faces, 160 cells, 70 hypercells, and 12 5-faces/facets. All elements are hypercubes.
      2. {3,3,3,3,4} - hexacross or 6-cross-polytope Image:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_ring.png
        • It has 12 vertices, 60 edges, 160 faces, 240 cells, 192 hypercells, 64 5-faces/facets. All elements are simplexes.
  3. B6 [33,1,1] - Image:CD dot.pngImage:CD 3.pngImage:CD_downbranch-00.pngImage:CD 3.pngImage:CD dot.pngImage:CD 3.pngImage:CD dot.pngImage:CD 3.pngImage:CD dot.png
    • 46 uniform polypeta as permutations of rings in the group diagram, including one from the demihypercube family:
      1. {33,1,1} - demihexeract. Image:CD ring.pngImage:CD 3.pngImage:CD_downbranch-00.pngImage:CD 3.pngImage:CD dot.pngImage:CD 3.pngImage:CD dot.pngImage:CD 3.pngImage:CD dot.png; also as h{4,3,3,3,3} Image:CDW_hole.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.png
        • It has 32 vertices, 240 edges, 640 faces, 640 cells, 252 hypercells, and 44 5-faces/facets. The facets are: 12 demipenteract and 32 5-simplexes.
  4. E6 [32,2,1] - Image:CD dot.pngImage:CD 3.pngImage:CD dot.pngImage:CD 3.pngImage:CD_downbranch-00.pngImage:CD 3.pngImage:CD dot.pngImage:CD 3.pngImage:CD dot.png
    • 39 uniform polypeta as permutations of rings in the group diagram, including one semiregular:
      1. {32,2,1} - Image:CD ring.pngImage:CD 3.pngImage:CD dot.pngImage:CD 3.pngImage:CD_downbranch-00.pngImage:CD 3.pngImage:CD dot.pngImage:CD 3.pngImage:CD dot.png, Thorold Gosset's semiregular polytope, 22,1:
        • It has 27 vertices, 216 edges, 720 faces, 1080 cells, 648 4-faces, and 99 5-faces/facets. The 99 regular facets are of two types: 27 pentacrosses and 72 simplexes.

[edit] Uniform prismatic forms

There are 18 categorical uniform prismatic forms based on Cartesian products of lower dimensional uniform polytopes. Each combination of at least one ring on every connected group produces a uniform prismatic 6-polytope.

    1. A5xA1: [3,3,3,3] x [ ] - Image:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.png
    2. C5xA1:[4,3,3,3] x [ ] - Image:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.png
    3. B5xA1: [32,1,1] x [ ] - Image:CD dot.pngImage:CD 3.pngImage:CD_downbranch-00.pngImage:CD 3.pngImage:CD dot.pngImage:CD 3.pngImage:CD dot.pngImage:CD 2.pngImage:CD dot.png
    4. A4xD2p: [3,3,3]x[p] - Image:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_p.pngImage:CDW_dot.png
    5. C4xD2p: [4,3,3]x[p] - Image:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_p.pngImage:CDW_dot.png
    6. F4xD2p: [3,4,3]x[p] - Image:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_p.pngImage:CDW_dot.png
    7. G4xD2p: [5,3,3]x[p] - Image:CDW_dot.pngImage:CDW_5.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_p.pngImage:CDW_dot.png
    8. B4xD2p: [31,1,1] x [p] - Image:CD dot.pngImage:CD 3.pngImage:CD_downbranch-00.pngImage:CD 3.pngImage:CD dot.pngImage:CD_2.pngImage:CD_dot.pngImage:CD_p.pngImage:CD_dot.png
    9. A3xA3: [3,3]x[3,3] - Image:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.png
    10. A3xC3: [3,3]x[4,3] - Image:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.png
    11. A3xG3: [3,3]x[5,3] - Image:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_5.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.png
    12. C3xC3: [4,3]x[4,3] - Image:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.png
    13. C3xG3: [4,3]x[5,3] - Image:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_5.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.png
    14. G3xA3: [5,3]x[5,3] - Image:CDW_dot.pngImage:CDW_5.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_5.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.png
    15. A3xD2qxA1: [3,3] x [p] x [ ] - Image:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_p.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.png
    16. C3xD2qxA1: [4,3] x [p] x [ ] - Image:CDW_dot.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_p.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.png
    17. G3xD2qxA1: [5,3] x [p] x [ ] - Image:CDW_dot.pngImage:CDW_5.pngImage:CDW_dot.pngImage:CDW_3.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_p.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.png
    18. D2pxD2qxD2r: [p] x [q] x [r] - Image:CDW_dot.pngImage:CDW_p.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_q.pngImage:CDW_dot.pngImage:CDW_2.pngImage:CDW_dot.pngImage:CDW_r.pngImage:CDW_dot.png

[edit] See also

[edit] References

  • T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
  • A. Boole Stott: Geometrical deduction of semiregular from regular polytopes and space fillings, Verhandelingen of the Koninklijke academy van Wetenschappen width unit Amsterdam, Eerste Sectie 11,1, Amsterdam, 1910
  • H.S.M. Coxeter:
    • H.S.M. Coxeter, M.S. Longuet-Higgins und J.C.P. Miller: Uniform Polyhedra, Philosophical Transactions of the Royal Society of London, Londne, 1954
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966

[edit] External links

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu