New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Adjoint endomorphism - Wikipedia, the free encyclopedia

Adjoint endomorphism

From Wikipedia, the free encyclopedia

In mathematics, the adjoint endomorphism or adjoint action is an endomorphism of Lie algebras that plays a fundamental role in the development of the theory of Lie algebras and Lie groups.

Given an element x of a Lie algebra \mathfrak{g}, one defines the adjoint action of x on \mathfrak{g} as the endomorphism \textrm{ad}_x :\mathfrak{g}\to \mathfrak{g} with

adx(y) = [x,y]

for all y in \mathfrak{g}.

adx is an action that is linear.

Contents

[edit] Adjoint representation

The mapping \textrm{ad}:\mathfrak{g}\rightarrow \textrm{End}(\mathfrak{g}) given by x\mapsto \textrm{ad}_x is a representation of a Lie algebra and is called the adjoint representation of the algebra. Physics literature usually uses the notation gl(V) instead of End(V) to denote the set of linear maps of a vector space V (which is the Lie algebra of the general linear group over V); we recall that, of course, \mathfrak{g} is a vector space.

The Jacobi identity

[x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0

takes the form

ad[x,y] = [adx,ady].

Because \textrm{End}(\mathfrak{g}) is a set of linear transformations of a vector space, we can take the composition of two maps, and we can then write the Lie bracket as

[\textrm{ad}_x,\textrm{ad}_y]=\textrm{ad}_x \circ \textrm{ad}_y - \textrm{ad}_y \circ \textrm{ad}_x

where \circ denotes composition of linear maps. If a basis is chosen for \mathfrak{g}, this corresponds to matrix multiplication. This last identity allows us to confirm that ad really is a Lie algebra homomorphism, in that the morphism ad commutes with the multiplication operator [,]. To see this, take an element z in g. We then have

\left([\textrm{ad}_x,\textrm{ad}_y]\right)(z) = [[x,y],z]  = \left(\textrm{ad}_{[x,y]}\right)(z)

[edit] Derivation

A derivation on a Lie algebra is a linear map \delta:\mathfrak{g}\rightarrow \mathfrak{g} that obeys the Leibniz' law, that is,

δ([x,y]) = [δ(x),y] + [x,δ(y)]

for all x and y in the algebra.

That adx is a derivation is a consequence of the Jacobi identity. This implies that the image of \mathfrak{g} under ad is a subalgebra of \operatorname{Der}(\mathfrak{g}), the space of all derivations of \mathfrak{g}.

[edit] Structure constants

The explicit matrix elements of the adjoint representation are given by the structure constants of the algebra. That is, let {ei} be a set of basis vectors for the algebra, with

[e^i,e^j]={c^{ij}}_k e^k.

Then the matrix elements for adei are given by

{\left[ \textrm{ad}_{e^i}\right]_k}^j = {c^{ij}}_k.

Thus, for example, the adjoint representation of su(2) is so(3).

[edit] Relation to Ad

Ad and ad are related through the exponential map; crudely, Ad = exp ad, where Ad is the adjoint representation for a Lie group.

To be precise, let G be a Lie group, and let \Psi:G\rightarrow \textrm{Aut} (G) be the mapping g\mapsto \Psi_g with \Psi_g:G\to G given by the inner automorphism

Ψg(h) = ghg − 1.

This is called the Lie group map. Define Adg to be the derivative of Ψg at the origin:

\textrm{Ad}(g) = (d\Psi_g)_e : T_eG \rightarrow T_eG

where d is the differential and TeG is the tangent space at the origin e (e is the identity element of the group G).

The Lie algebra g of G is g=TeG. Since \textrm{Ad}_g\in\textrm{Aut}(\mathfrak{g}), \textrm{Ad}:g\mapsto \textrm{Ad}_g is a map from G to Aut(TeG) which will have a derivative from TeG to End(TeG) (the Lie algebra of Aut(V) is End(V)).

Then we have

\textrm{ad} = d(\textrm{Ad})_e:T_eG\rightarrow \textrm{End} (T_eG).

The use of upper-case/lower-case notation is used extensively in the literature. Thus, for example, a vector x in the algebra \mathfrak{g} generates a vector field X in the group G. Similarly, the adjoint map adxy=[x,y] of vectors in \mathfrak{g} is homomorphic to the Lie derivative LXY =[X,Y] of vector fields on the group G considered as a manifold.

[edit] References

  • William Fulton and Joe Harris, Representation Theory, A First Course, (1991) Springer-Verlag, New York. ISBN 0-387-97495-4

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu