New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Glossary of game theory - Wikipedia, the free encyclopedia

Glossary of game theory

From Wikipedia, the free encyclopedia

Game theory is the branch of mathematics in which games are studied: that is, models describing human behaviour. This is a glossary of some terms of the subject.

Contents

[edit] Definitions of a Game

[edit] Notational conventions

Real numbers 
\mathbb{R}.
The set of players 
N.
Strategy space 
\Sigma\ = \prod_{i \in \mathrm{N}} \Sigma\ ^i. Where:
Player i's strategy space 
\Sigma\ ^i is the space of all possible ways in which player i can play the game.
A strategy for player i 

\sigma\ _i is an element of \Sigma\ ^i.

complements 

\sigma\ _{-i} an element of \Sigma\ ^{-i} = \prod_{ j \in \mathrm{N}, j \ne i} \Sigma\ ^j, is a tuple of strategies for all players other than i.

Outcome Space 
\Gamma\ is in most textbooks identical to -
Payoffs 
\mathbb{R} ^ \mathrm{N}, describing how much gain (money, pleasure, etc.) the players are allocated by the end of the game.

[edit] Normal form game

A game in normal form is a function:

\pi\ : \prod_{i\in \mathrm{N}} \Sigma\ ^ i \to \mathbb{R}^\mathrm{N}

Given the tuple of strategies chosen by the players, one is given an allocation of payments (given as real numbers).

A further generalization can be achieved by splitting the game into a composition of two functions:

\pi\ : \prod_{i \in \mathrm{N}} \Sigma\ ^i \to \Gamma\

the outcome function of the game (some authors call this function "the game form"), and:

\nu\ : \Gamma\ \to \mathbb{R}^\mathrm{N}

the allocation of payoffs (or preferences) to players, for each outcome of the game.

[edit] Extensive form game

This is given by a tree, where at each vertex of the tree a different player has the choice of choosing an edge.

[edit] Cooperative game

A game in which players are allowed form coalitions (and to enforce coalitionary discipline). A cooperative game is given by stating a value for every coalition:

\nu\ : 2^{\mathbb{P}(N)} \to \mathbb{R}

It is always assumed that the empty coalition gains nil. Solution concepts for cooperative games usually assume that the players are forming the grand coalition N, whose value ν(N) is then divided among the players to give an allocation.

[edit] Simple game

A Simple game is a simplified form of a cooperative game, where the possible gain is assumed to be eiter '0' or '1'. A simple game is couple (N, W), where W is the list of "winning" coalitions, capable of gaining the loot ('1'), and N is the set of players.

[edit] Glossary

Acceptable game 
is a game form such that for every possible preference profiles, the game has pure nash equilibria, all of which are pareto efficient.
Allocation of goods 
is a function \nu\ : \Gamma\ \to \mathbb{R} ^\mathrm{N}. The allocation is a cardinal approach for determining the good (e.g. money) the players are granted under the different outcomes of the game.
Best reply 
the best reply to a given complement \sigma\ _{-i} is a strategy \tau\ _i that maximizes player i's payment. Formally, we want:
\forall \sigma\ _i \in\ \Sigma\ ^i \quad \quad \pi\ (\sigma\ _i ,\sigma\ _{-i} ) \le \pi\ (\tau\ _i ,\sigma\ _{-i} ).
Coalition 
is any subset of the set of players: \mathrm{S} \subseteq \mathrm{N}.
Condorcet winner 
Given a preference ν on the outcome space, an outcome a is a condorcet winner if all non-dummy players prefer a to all other outcomes.
Dictator
A player is a strong dictator if he can guarantee any outcome regardless of the other players. m \in \mathbb{N} is a weak dictator if he can guarantee any outcome, but his strategies for doing so might depend on the complement strategy vector. Naturally, every strong dictator is a weak dictator. Formally:
m is a Strong dictator if:
\forall a \in \mathrm{A}, \; \exist \sigma\ _n \in \Sigma\ ^n \; s.t. \; \forall \sigma\ _{-n} \in \Sigma\ ^{-n}: \; \Gamma\ (\sigma\ _{-n},\sigma\ _n) = a
m is a Weak dictator if:
\forall a \in \mathrm{A}, \; \forall \sigma\ _{-n} \in \Sigma\ ^{-n} \; \exist \sigma\ _n \in \Sigma\ ^n \; s.t. \; \Gamma\ (\sigma\ _{-n},\sigma\ _n) = a

Another way to put it is:
a weak dictator is α-effective for every possible outcome.
A strong dictator is β-effective for every possible outcome.
A game can have no more than one strong dictator. Some games have multiple weak dictators (in rock-paper-scissors both players are weak dictators but none is a strong dictator).
See Effectiveness. Antonym: dummy.

Dominated outcome 
Given a preference ν on the outcome space, we say that an outcome a is dominated by outcome b (hence, b is the dominant strategy) if it is preferred by all players. If, in addition, some player strictly prefers b over a, then we say that a is strictly dominated. Formally:
\forall j \in \mathrm{N} \; \quad   \nu\ _j (a) \le\ \nu\ _j (b) for domination, and
\exists i \in \mathrm{N} \; s.t. \; \nu\ _i (a)   <  \nu\ _i (b) for strict domination.
An outcome a is (strictly) dominated if it is (strictly) dominated by some other outcome.
An outcome a is dominated for a coalition S if all players in S prefer some other outcome to a. See also Condorcet winner.
Dominated strategy 
we say that strategy is (strongly) dominated by strategy \tau\ _i if for any complement strategies tuple \sigma\ _{-i}, player i benefits by playing \tau\ _i. Formally speaking:
\forall \sigma\ _{-i} \in\ \Sigma\ ^{-i} \quad \quad \pi\ (\sigma\ _i ,\sigma\ _{-i} ) \le \pi\ (\tau\ _i ,\sigma\ _{-i} ) and
\exists \sigma\ _{-i} \in\ \Sigma\ ^{-i} \quad s.t. \quad  \pi\ (\sigma\ _i ,\sigma\ _{-i} ) < \pi\ (\tau\ _i ,\sigma\ _{-i} ).
A strategy σ is (strictly) dominated if it is (strictly) dominated by some other strategy.
Dummy 
A player i is a dummy if he has no effect on the outcome of the game. I.e. if the outcome of the game is insensitive to player i's strategy.

Antonyms: say, veto, dictator.

Effectiveness 
A coalition (or a single player) S is effective for a if it can force a to be the outcome of the game. S is α-effective if the members of S have strategies s.t. no matter what the complement of S does, the outcome will be a.

S is β-effective if for any strategies of the complement of S, the members of S can answer with strategies that ensure outcome a.

Finite game 
is a game with finitely many players, each of which has a finite set of strategies.
Mixed strategy 
for player i is a probability distribution P on \Sigma\ ^i. It is understood that player i chooses a strategy randomly according to P.
Mixed Nash Equilibrium 
Same as Pure Nash Equilibrium, defined on the space of mixed strategies. Every finite game has Mixed Nash Equilibria.
Pareto efficiency 
An outcome a of game form π is (strongly) pareto efficient if it is undominated under all preference profiles.
Preference profile 
is a function \nu\ : \Gamma\ \to \mathbb{R} ^\mathrm{N}. This is the ordinal approach at describing the outcome of the game. The prefference describes how 'pleased' the players are with the possible outcomes of the game. See allocation of goods.
Pure Nash Equilibrium 
An element \sigma\ = (\sigma\ _i) _ {i \in \mathrm{N}} of the strategy space of a game is a pure nash equilibrium point if no player i can benefit by deviating from his strategy \sigma\ _i, given that the other players are playing in \sigma\. Formally:
\forall i \in \mathrm{N} \quad \forall \tau\ _i \in\ \Sigma\ ^i \quad  \pi\ (\tau\ ,\sigma\ _{-i} ) \le \pi\ (\sigma\ ).
No equilibrium point is dominated.
Say 
A player i has a Say if he is not a Dummy, i.e. if there is some tuple of complement strategies s.t. π (σ_i) is not a constant function.

Antonym: Dummy.

Value 
A value of a game is a rationally expected outcome. There are more than a few definitions of value, describing different meathods of obtaining a solution to the game.
Veto 
A veto denotes the ability (or right) of some player to prevent a specific alternative from being the outcome of the game. A player who has that ability is called a veto player.

Antonym: Dummy.

Weakly acceptable game 
is a game that has pure nash equilibria some of which are pareto efficient.
Zero sum game 
is a game in which the allocation is constant over different outcomes. Formally:
\forall \gamma\ \in \Gamma\ \sum_{i \in \mathrm{N}} \nu\ _i (\gamma\ ) = const.
w.l.g. we can assume that constant to be zero. In a zero sum game, one player's gain is another player's loss. Most classical board games (e.g. chess, checkers) are zero sum.


 view  Topics in game theory

Definitions

Normal form game · Extensive form game · Cooperative game · Information set · Preference

Equilibrium concepts

Nash equilibrium · Subgame perfection · Bayes-Nash · Trembling hand · Proper equilibrium · Epsilon-equilibrium · Correlated equilibrium · Sequential equilibrium · Quasi-perfect equilibrium · ESS · Risk dominance

Strategies

Dominant strategies · Mixed strategy · Tit for tat · Grim trigger

Classes of games

Symmetric game · Perfect information · Dynamic game · Repeated game · Signaling game · Cheap talk · Zero-sum game · Mechanism design

Games

Prisoner's dilemma · Coordination game · Chicken · Battle of the sexes · Stag hunt · Matching pennies · Ultimatum game · Minority game · Rock, Paper, Scissors · Pirate game · Dictator game · Public goods game · Nash bargaining game

Theorems

Minimax theorem · Purification theorems · Folk theorem · Revelation principle · Arrow's Theorem

Related topics

Mathematics · Economics · Behavioral economics · Evolutionary game theory · Population genetics · Behavioral ecology · Adaptive dynamics · List of game theorists

This page has been transwikied to Wiktionary.

Because this article has content useful to Wikipedia's sister project Wiktionary, it has been copied to there, and its dictionary counterpart can be found at either Wiktionary:Transwiki:Glossary of game theory or Wiktionary:Glossary of game theory. It should no longer appear in Category:Copy to Wiktionary and should not be re-added there.
Wikipedia is not a dictionary, and if this article cannot be expanded beyond a dictionary definition, it should be tagged for deletion. If it can be expanded into an article, please do so and remove this template.
Note that {{vocab-stub}} is deprecated. If {{vocab-stub}} was removed when this article was transwikied, and the article is deemed encyclopedic, there should be a more suitable category for it.

In other languages

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu