New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Talk:Group action - Wikipedia, the free encyclopedia

Talk:Group action

From Wikipedia, the free encyclopedia

I have added a reference to results of Higgins and me on the fundamental groupoid of an orbit space since this is a powerful result, and I hope people will find this useful. Ronnie Brown Sept 29, 2006


I'm not sure about the standard terminology here:

  • Is it called "faithful" or "free"?
  • Is "invariant" and "stable" really the same?
  • Are the sets G.x really called "traces"? --AxelBoldt

  • It's called "faithful", or "effective". ("Free" means that only the identity element has a fixed point.)
  • I'm not sure about this one. I would use "invariant" for the sense you were talking about.
  • The sets G.x are usually called "orbits" (as in the Orbit-Stabilizer Theorem).

--Zundark, 2001 Oct 28


I removed the reference to permutation groups in the first paragraph since a permutation group on M is a subgroups of Sym(M), while a transformation group G on M is given by a (not necessarily injective) homomorphism G → Sym(M). So they are not the same. AxelBoldt 17:45 Oct 31, 2002 (UTC)


If G acts on A, I think that "invariant" means G.A=A while "stable" means that G.A is a subset (possibly proper) of A.

If so, you can't actually have G.A ≠ A, with G a group. Charles Matthews 16:21, 15 November 2005 (UTC)
due to the neutral ? You're true. It you think to the whole matricial group (M) acting on othogonal matrices (O), the group O is not stable because MO is not an orthogonal matrice in general. Then my initial bracket "possibly proper" is actually not necessary.

There's now an overlap with orbit (mathematics).

Charles Matthews 18:52 24 Jun 2003 (UTC)

I've now merged in that stuff. Also orbit (group theory) now redirects here. -- Fropuff 17:51, 2004 Aug 23 (UTC)

In the first sentence under definition, g is used both as the group action, and as an element of the group G. Suggest use (say) α for the group action instead. Tveldhui 01:38, 17 January 2006 (UTC)tveldhui

the dot denotes the action, g is always a group element. -MarSch 16:25, 1 February 2006 (UTC)

Contents

[edit] Reference

I've added a reference from the group article which I believe is sufficiently familiar and encylopedic to satisfy many people. I propose we use this reference to obtain a uniform set of notations and terms, perhaps even in multiple articles. Perhaps I'll get around to it in a week or so, with consensus, if no one else does. Orthografer 18:53, 29 June 2006 (UTC)

[edit] n-transitivity

Hello,

you define n-transitivity to be "transitivity on Xn", by which I suppose you mean the action on Xn with

g(x_1,\ldots,x_n) = (gx_1,\ldots,gx_n).

But then n-transitivity can not be defined as transitivity on Xn, because you can never find a g satisfying

g(a,a) = (b,c)

for b \not = c from X.

A correct definition would read: For pairwise distinct x_1,\ldots,x_n and y_1,\ldots,y_n there is a g such that

gxk = yk

holds for 1\leq k \leq n.

OK, seeing that both the xk and the yk have to be pairwise distinct (otherwise g would not be a bijection) we might restrict the action of Xn to the subset of Xn containing no multiple entries. If that is what you mean by "transitivity on Xn" I guess it deserves being pointed out explicitly.

—The preceding unsigned comment was added by FarSide (talkcontribs) 08:23, 7 July 2006 (UTC2)

[edit] similar structure

Does anybody know the following structure, similar to the stabilizer, defined, for A,B\subset 2^G (the power set), by

G(A,B) = { x\in G | \forall a\in A \exists b\in B : b x \subset a }

(Note: a,b are subsets of G !)

Might this exist in the context of topological groups (where A,B would be neighborhoods of the identity element) ? It ressembles to the Kolmogorov definition of bounded sets

I ran across this in the context of modules over a ring (G would be a module over R, and B\subset 2^R). This seems so basic (and has nice properties) that I'm sure it already exists in literature, but I could not yet find it. Thanks in advance ! — MFH:Talk 21:50, 12 October 2006 (UTC)


[edit] sharply transitive = regular (= simply transitive) ?

As far as I understand the term sharply transitive is the same as regular or simply transitive, isn't it? If so, it would be good to mention this in the article. Florianhe 21:19, 11 January 2007 (UTC)

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu