Inner regular measure
From Wikipedia, the free encyclopedia
In mathematics, an inner regular measure is one for which the measure of a set can be approximated from within by compact subsets.
[edit] Definition
Let (X, T) be a Hausdorff topological space and let Σ be a σ-algebra on X that contains the topology T (so that every open set is a measurable set, and Σ is at least as fine as the Borel σ-algebra on X). Then a measure μ on the measurable space (X, Σ) is called inner regular if, for every set A in Σ,
This property is sometimes referred to in words as "approximation from within by compact sets."
Some authors[1] use the term tight as a synonym for inner regular. This use of the term is closely related to tightness of a family of measures, since a measure μ is inner regular if and only if, for all ε > 0, there is some compact subset K of X such that μ(X \ K) < ε. This is precisely the condition that the singleton collection of measures {μ} is tight.
[edit] Reference
- ^ Ambrosio, L., Gigli, N. & Savaré, G. (2005). Gradient Flows in Metric Spaces and in the Space of Probability Measures. Basel: ETH Zürich, Birkhäuser Verlag. ISBN 3-7643-2428-7.