New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Null-symmetric matrix - Wikipedia, the free encyclopedia

Null-symmetric matrix

From Wikipedia, the free encyclopedia

In mathematics, a null-symmetric matrix is a matrix which null space is the same as the null space of its transpose. Thus if matrix A is null symmetric,

\operatorname{Null} \, A = \operatorname{Null} \, A^\top,

where the null space of an n-by-n matrix A is defined by

\operatorname{Null} \, A = \{ \mathbf{v} \in \mathbf{R}^n : A \mathbf{v} = \mathbf{0} \}.

All symmetric, skew-symmetric, orthogonal matrices, and more generally normal matrices, are null-symmetric.

The above is defined for real matrix A. In the complex case, a null-Hermitian matrix A satisfies

\operatorname{Null} \, A = \operatorname{Null} \, A^*.

Likewise, all Hermitian, skew-Hermitian, unitary matrices, and more generally complex normal matrices, are null-Hermitian.

Contents

[edit] Examples

The following matrix

A = \begin{bmatrix} -5 &  0 &  0\\  3 & -1 & -2\\  6 & -2 & -4\end{bmatrix}

is null-symmetric because its null space and the null space of its transpose

A^\top = \begin{bmatrix} -5 &  3 &  6\\  0 & -1 & -2\\  0 & -2 & -4\end{bmatrix}

are both spanned by the vector

\mathbf{v} = \begin{bmatrix}  0\\ -2\\  1\end{bmatrix}.

Note that A is neither a symmetric, a skew-symmetric, nor a normal matrix.

[edit] Properties

  • When a null-symmetric matrix is decomposed as the sum of its symmetric and skew-symmetric components, these components have the same null space as the original matrix.
  • If A is null-symmetric, then A raised to any power is also null-symmetric with the same null space as A.
  • If A is null-symmetric, then A*A and AA* are also null-symmetric with the same null space as A.

[edit] Application

The property of null-symmetry has been used in structural dynamics for solving inverse perturbation problems. Instead of referring to structural dynamic equations, we will simplify the discussions by referring to a linear matrix inverse problem of AX=Y, where we wish to find matrix A given matrices X and Y. If matrix A is rank deficient, we have an underdetermined problem, and thus an infinite number of solutions. The minimum norm solution is unique and can be obtained using Moore-Penrose's pseudoinverse, if that is what we are interested in. However, structural dynamicists are usually more interested in matrix solutions that are either symmetric or skew-symmetric. The null-symmetric (e.g. symmetric or skew-symmetric) solution is also unique and can be obtained based on Minimum Rank Perturbation Theory (MRPT) (Kaouk and Zimmerman, 1992). As the following example shows, Moore-Penrose's pseudoinverse destroys the symmetric structure of the solution matrix, while MRPT does not:

Consider the following symmetric (hence also null-symmetric) matrix

A = \begin{bmatrix} -5 &  3 & 0\\  3 & -2 & 0\\  0 &  0 & 0\end{bmatrix}

which has rank 2. Given

X = \begin{bmatrix} 1 & 1\\ 0 & 1\\ 1 & 0\end{bmatrix},

we have

Y = \begin{bmatrix} -5 & -2\\  3 &  1\\  0 &  0\end{bmatrix}.

Minimum norm solution YX + with Moore-Penrose's pseudoinverse X + = [XTX] − 1XT results in

1/3 \begin{bmatrix} -7 &  1 & -8\\  4 & -1 &  5\\  0 &  0 &  0\end{bmatrix},

which is not equal to A and not symmetric. MRPT solution Y[YTX] − 1YT results in

\begin{bmatrix} -5 &  3 & 0\\  3 & -2 & 0\\  0 &  0 & 0\end{bmatrix},

which is symmetric and equal to A. It should be noted that while MRPT preserves symmetry in its solution, it does not guarantee symmetry. Instead it guarantees null-symmetry only. This can be easily demonstrated by creating a matrix A that is rank deficient but not null-symmetric, where MRPT solution will still be null-symmetric but will not be equal to A.

[edit] References

  • Keng C. Yap and David C. Zimmerman (1999). "Damage Detection of Gyroscopic Systems Using an Asymmetric Minimum Rank Perturbation Theory". Proceedings of the 17th SEM International Modal Analysis Conference. 
  • Mohamed Kaouk and David C. Zimmerman (1992). "Structural Damage Assessment Using a Generalized Minimum Rank Perturbation Theory". AIAA Journal 32: 836-842. 

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu