Pseudoelasticity
From Wikipedia, the free encyclopedia
Pseudoelasticity, or sometimes called super elasticity, is an elastic (impermanent) response to relatively high stress caused by a phase transformation between the austenitic and martensitic phases of a crystal. It is exhibited in Shape memory alloys. Pseudoelasticity is from the reversible motion of domain boundaries during the phase transformation, rather than just bond stretching or the introduction of defects in the crystal lattice (thus it is not true superelasticity but rather pseudoelasticity). Even if the domain boundaries do become pinned, they may be reversed through heating. Thus, a pseudoelastic material may return to its previous shape (hence, shape memory) after the removal of even relatively high applied strains. One special case of pseudoelasticity is called the Bain Correspondence. This involves the austenite/martensite phase transformation between a face centered crystal lattice and a body centered tetragonal crystal structure.[1]
[edit] References
- Liang C.; Rogers C. A. "One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials" Journal of Intelligent Material Systems and Structures, Vol. 1, No. 2, 207-234, 1990 (322 citations at 2007-1-21 according to Google Scholar, [1])
- Miyazaki, S; Otsuka, K; Suzuki, Y. "Transformation Pseudoelasticity and Deformation Behavior in a Ti-50.6at%Ni Alloy" Scripta Metallurgica Vol. 15, no. 3, 287-292, 1981
- Huo Y., Müller I. "Nonequilibrium thermodynamics of pseudoelasticity" - Continuum Mechanics and Thermodynamics, 163-204, Volume 5, Number 3, 1993
- Tanaka K.; Kobayashi S. ; Sato Y. "Thermomechanics of transformation pseudoelasticity and shape memory effect in alloys" International journal of plasticity, 1986, vol. 2, no1, 59-72
- Bhadeshia, H.K.D.H. "The Bain Correspondence". Materials Science and Mettalurgy, University of Cambridge. [2]
- Kamita T.; Matsuzaki Y. "One-dimensional pseudoelastic theory of shape memory alloys". Smart Mater. Struct. 7 (1998) 489–495. [3]
- Y. Yamada. "Theory of pseudoelasticity and the shape-memory effect". Phys. Rev. B Vol 46, No. 10. (1992) [4]