Transonic
From Wikipedia, the free encyclopedia

Transonic is an aeronautics term referring to a range of velocities just below and above the speed of sound (about mach 0.8–1.2). It is defined as the range of speeds between the critical mach number, when some parts of the airflow over an aircraft become supersonic, and a higher speed, typically near Mach 1.2, when all of the airflow is supersonic. Between these speeds some of the airflow is supersonic, and some is not.
Most modern jet powered aircraft spend a considerable amount of time in the transonic state. This is particularly important due to an effect known as wave drag, which is prevalent in these speed ranges. Attempts to combat wave drag can be seen on all high-speed aircraft; most notable is the use of swept wings, but another common form is a wasp-waist fuselage as a side effect of the Whitcomb area rule.
Severe instability can occur at transonic speeds. Shock waves move through the air at the speed of sound. When an object such as an aircraft also moves at the speed of sound, these shock waves build up in front of it to form a single, very large shock wave. During transonic flight, the plane must pass through this large shock wave, as well as contending with the instability caused by air moving faster than sound over parts of the wing and slower in other parts. The difference in speed is due to Bernoulli's principle.
Transonic speeds can also occur at the tips of rotor blades of helicopters and aircraft. However, as this puts severe, unequal stresses on the rotor blade, it is avoided and may lead to dangerous accidents if it occurs. It is one of the limiting factors to the size of rotors, and also to the forward speeds of helicopters (as this speed is added to the forward-sweeping (leading) side of the rotor, thus possibly causing localized transonics).
Contents |
[edit] Interesting facts
- At transonic speeds intense low-pressure areas form at various points around an aircraft. If conditions are right (i.e. high humidity) visible clouds will form in these low-pressure areas as shown in the illustration; these are called Prandtl-Glauert singularities. These clouds remain with the aircraft as it travels. It is not necessary for the aircraft as a whole to reach supersonic speeds for these clouds to form.
[edit] See also
[edit] Other Flow Regimes
- Subsonic flows
- Supersonic flows
- Hypersonic flows