Análisis de algoritmos
De Wikipedia, la enciclopedia libre
El análisis de algoritmos es una parte importante de la Teoría de complejidad computacional más amplia, que provee estimaciones teóricas para los recursos que necesita cualquier algoritmo que resuelva un problema computacional dado. Estas estimaciones resultan ser bastante útiles en la búsqueda de algoritmos eficientes.
A la hora de realizar un análisis teórico de algoritmos es corriente calcular su complejidad en un sentido asintótico, es decir, para una tamaño de entrada suficientemente grande. La cota superior asintótica, y las notaciones omega y theta se usan con esa finalidad. Por ejemplo, la búsqueda binaria decimos que se ejecuta en una cantidad de pasos proporcional a un logaritmo, en O(log(n)), coloquialmente "en tiempo logarítmico". Normalmente las estimaciones asintóticas se utilizan porque diferentes implementaciones del mismo algoritmo no tienen porque tener la misma eficiencia. No obstante la eficiencia de dos implementaciones "razonables" cualesquiera de un algoritmo dado están relacionadas por una constante multiplicativa llamada constante oculta.
La medida exacta (no asintótica) de la eficiencia a veces puede ser computada pero para ello suele hacer falta aceptar supuestos acerca de la implementación concreta del algoritmo, llamada modelo de computación. Un modelo de computación puede definirse en términos de una ordenador abstracto, como la Máquina de Turing, y/o postulando que ciertas operaciones se ejecutan en una unidad de tiempo. Por ejemplo, si al conjunto ordenado al que aplicamos una búsqueda binaria tiene n elementos, y podemos garantizar que una única búsqueda binaria puede realizarse en un tiempo unitario, entonces se requieren como mucho log2 N + 1 unidades de tiempo para devolver una respuesta.
Las medidas exactas de eficiencia son útiles para quienes verdaderamente implementan y usan algoritmos, porque tienen más precisión y así les permite saber cuanto tiempo pueden suponer que tomará la ejecución. Para algunas personas, como los desarrolladores de videojuegos, una constante oculta puede significar la diferencia entre éxito y fracaso.
Las estimaciones de tiempo dependen de cómo definamos un paso. Para que el análisis tenga sentido, debemos garantizar que el tiempo requerido para realizar un paso esté acotado superiormente por una constante. Hay que mantenerse precavido en este terreno; por ejemplo, algunos análisis cuentan con que la suma de dos números se hace en un paso. Este supuesto puede no estar garantizado en ciertos contextos. Si por ejemplo los números involucrados en la computación pueden ser arbitrariamente grandes, dejamos de poder asumir que la adición requiere un tiempo constante (usando papel y lápiz, compara el tiempo que necesitas para sumar dos enteros de 2 dígitos cada uno y el necesario para hacerlo con enteros de 1000 dígitos).
[editar] Véase también
[editar] Referencias
- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001. ISBN 0262032937. Chapter 1: Foundations, pp.3–122.