Formación estelar
De Wikipedia, la enciclopedia libre
La formación estelar es el proceso por el cual grandes masas de gas que se encuentran en galaxias formando extensas nubes moleculares se transforman en estrellas. Estas nubes moleculares pueden ir desde 100.000 masas solares a tan solo unas pocas. Los modelos de formación establecen un límite inferior bien conocido de 0,08 MSol para poder encender el hidrógeno. Por el contrario, el límite superior es mucho más difuso y viene determinado por un conjunto de factores que frenan el proceso, la fuerza centrífuga creciente al irse comprimiendo la nube, los campos magnéticos crecientes al aumentar las velocidades de las partículas cargadas y los vientos solares intensos que surgen cuando se empieza a estabilizar el embrión estelar. Con todo ello, se calcula que la masa máxima para una estrella estaría en torno a 60 o 100 MSol. El proceso de formación estelar se divide en dos fases uno como nube molecular y otro como protoestrella.
Tabla de contenidos |
[editar] Nube molecular
La teoría actual sobre la formación estelar, sostiene que la formación estelar se da en las nubes moleculares gigantes. Estas nubes contienen, básicamente, hidrógeno molecular H2. Son regiones frías (10-30K) y densas (10³-104 cm-3). Debido a alguna clase de desencadenante, se vuelven inestables gravitacionalmente, fragmentándose y colapsando. Los fragmentos pueden ir desde decenas hasta centenares de masas solares. La causa de la inestabilidad suele ser el frente de choque de alguna explosión de supernova o el paso de la nube por una región densa, como los brazos espirales. También puede ocurrir que una nube suficientemente masiva y fría colapse por sí misma. Sea como sea, el resultado siempre es una región colapsante en caída libre. Dicha región es inicialmente transparente a la radiación por lo que su compresión será prácticamente isoterma. Toda la energía gravitatoria se emitirá en forma de radiación infrarroja. Por otra parte, el centro de la región se contraerá más deprisa que el gas circundante por tener el primero mayor densidad. Así, se diferenciará un núcleo más denso llamado protoestrella.
[editar] Inestabilidad de Jeans
La teoría de la fragmentación y colapso gravitatorio de nubes moleculares por su propia gravedad fue desarrollada por James Jeans alrededor del año 1902 y aunque en la actualidad los procesos de formación estelar se conocen con mucha mayor precisión la teoría de Jeans constituye una buena primera aproximación.
Jeans calculó que bajo determinadas condiciones una nube molecular podía contraerse por atracción gravitatoria. Solo hacía falta que fuera lo suficientemente masiva y fría. Una nube estable, si se comprime, aumenta su presión más rápidamente que su gravedad y retorna espontáneamente a su estado original. Pero si la nube supera cierta masa crítica entonces se inestabilizará toda y colapsará en todo su volumen. Éste es el motivo por el cual las inestabilidades suelen producirse en las nubes más grandes dando lugar a brotes intensos de formación estelar. Esta masa crítica de Jeans es una función dependiente de la densidad y la temperatura y se representa como:
[editar] Protoestrella
La masa, inicialmente homogénea, acaba por formar una esfera de gas en el centro. Dicha esfera se contrae más deprisa diferenciándose del resto de la nube. Esta estructura es el embrión estelar denominado protoestrella. A pesar de la compresión del gas su densidad es, aún, demasiado baja y la radiación sigue escapando libremente. Por ello, la esfera apenas aumenta su temperatura hasta al cabo de unos cientos de miles de años. El cuerpo entonces se torna opaco a la radiación y empieza a calentarse mientras se contrae. De hecho, la mitad de la energía gravitatoria perdida en el colapso sigue radiándose pero la otra mitad ya se invierte en calentar la protoestrella. La temperatura aumenta hasta que la presión de la esfera compensa la atracción gravitatoria de ésta. Se estabiliza, así, un núcleo convectivo del tamaño de Júpiter, aproximadamente, al cual se le va agregando más y más materia procedente de la nube circundante que cae más lentamente. Al añadirse más masa el núcleo lo compensa compactándose aún más. En él el transporte térmico por radiación aun no es eficiente ya que el cuerpo está formado por material escasamente ionizado que detiene a los fotones.
El proceso prosigue hasta llegar a unos 2.000 grados momento en el cual las moléculas de hidrógeno se disocian en el núcleo. Ahora la creciente energía gravitatoria se invierte en transformar el gas molecular en un gas formado por átomos libres. El núcleo se compacta cada vez más y su radiación cada vez más intensa excita el denso gas de la envoltura que cae sobre él. Ahora el medio ya no es transparente a la radiación y solo se aprecia el gas que rodea a la protoestrella. Este gas ha ido conformando, paulatinamente, un disco de acrecimiento debido a la rotación inicial de la nube originaria (ver formación de discos de acrecimiento). La acreción de materia prosigue, por medio de un disco circumestelar. En dicho disco pueden originarse planetas y asteroides si la metalicidad es lo suficientemente alta. La materia añadida a la protoestrella aumenta la masa y, por lo tanto, su gravedad, por lo que ésta reacciona comprimiéndose más, aumentando así su temperatura. Cuando ha caído gran parte del gas el medio se vuelve transparente a la luz de la protoestrella que empieza, entonces, a ser visible.
El núcleo de la protoestrella no solo acaba por ionizar sus elementos si no que cuando las temperaturas son lo suficientemente altas, comienza la fusión del deuterio. La presión de radiación resultante hace más lento el colapso del material restante pero no lo detiene. Su núcleo sigue comprimiéndose más y la protoestrella sigue acretando masa. En esta etapa se producen flujos bipolares, un efecto que se debe. probablemente, al momento angular del material que cae. El proceso sigue así hasta que se inicia, finalmente, la ignición del hidrógeno en torno a los 10 millones de grados. Entonces la presión aumenta drásticamente generando fuertes vientos estelares que barren y expulsan el resto del material envolvente. La nueva estrella se estabiliza en equilibrio hidrostático y entra en la secuencia principal en la que transcurrirá la mayor parte de su vida.
Pero si el cuerpo está por debajo de las 0,08 masas solares el proceso se abortará antes de tiempo frenado por la presión de los electrones degenerados sin haber llegado aún a encender el hidrógeno. El objeto detendrá su contracción y se enfriará en un tiempo de Kelvin, unos pocos millones de años para convertirse, finalmente, en una enana marrón.
[editar] Formación de estrellas supermasivas
Las etapas del proceso están bien definidas para estrellas cuya masa es aproximadamente igual o menor que la masa del Sol. Para masas mayores, la duración del proceso de formación estelar es comparable a las otras escalas de tiempo de su evolución, mucho más cortas, y el proceso no está tan bien definido. De algún modo se cree que la ignición del hidrógeno empezaría bastante antes de que la estrella llegara a agregar su masa total. Otra gran parte de la masa más exterior sería no solo barrida e impulsada hacia el espacio interestelar sino también fotoionizada por su intensa radiación dando lugar a las regiones HII. Sea como sea la vida de estas estrellas es tan corta, del orden de cientos o incluso decenas de millones de años, que en tiempos cosmológicos ni siquiera existen. Su formación, vida y destrucción son procesos muy dramáticos en los que apenas si hay descanso.
Se sabe que la opacidad aumenta con la metalicidad ya que los elementos cuanto más pesados más absorben los fotones. Esto se traduce en un mayor empuje por parte de los vientos estelares de las estrellas supermasivas que, con las metalicidades actuales de la galaxia, no logran concentrar más de 60MSol. Este empuje impide, a partir de cierto punto, que la estrella sigua acretando masa, por eso, las estrellas más pobres en metales pueden llegar a masas mayores. Se cree que las primeras estrellas del universo, muy pobres en metales, se podrían haber formado con masas de 100 o hasta 150MSol solo compuestas por hidrógeno y helio.