Función escalón unitario
De Wikipedia, la enciclopedia libre
La función escalón de Heaviside , también llamada función escalón unitario, debe su nombre a Oliver Heaviside. Es una función continua cuyo valor es 0 para cualquier argumento negativo, y 1 para cualquier argumento positivo:
Tiene aplicaciones en ingeniería de control y procesamiento de señales, representando una señal que se enciende en un tiempo específico, y se queda prendida indefinidamente.
Es la integral de la función delta de Dirac.
El valor de u(0) es causa de discusión. Algunos lo definen como u(0) = 0, otros u(0) = 1. u(0) = 1/2 es la opción usada más coherente, ya que maximiza la simetría de la función, y permite una representación de la misma a través de la función signo:
Puede especificarse con un subíndice el valor que se va a usar para u(0), de la siguiente forma:
Una forma de representar esta función es a través de la integral