Homología (matemática)
De Wikipedia, la enciclopedia libre
En matemática (especialmente en topología algebraica y en álgebra abstracta), la homología (en Griego homos = idéntico) es un procedimiento general para asociar un objeto matemático dado (por ejemplo un espacio topológico o un grupo) una secuencia de grupos abelianos, es decir una acción functorial.
Para un espacio topológico, los grupos de homología son generalmente mucho más fáciles de computar que los grupos de homotopía, y consecuentemente, uno habitualmente tendrá un trabajo más simple con homología para ayudar en la clasificación de espacios.
[editar] El concepto
Se dice que la homología mide la falta de exactitud de un complejo de cadenas en cada uno de sus eslabones. Por ejemplo si tenemos una complejo de cadenas corto
entonces sus correspondientes grupos de homología son:
Es obvio que si la sucesión fuese exacta, entonces estos grupos serían triviales (=0) todos.