Intégrale d'Itô
Un article de Wikipédia, l'encyclopédie libre.
![]() |
Cet article est une ébauche à compléter concernant les probabilités et les statistiques, vous pouvez partager vos connaissances en le modifiant. |
L'intégrale d'Itō, appelée ainsi en l'honneur du mathématicien Kiyoshi Itō est un des outils fondamentaux du calcul stochastique.
Il s'agit d'une intégrale définie de façon similaire à l'intégrale de Riemann comme limite d'une somme de Riemann. Si on se donne un processus de Wiener ainsi que
un processus stochastique adapté à la filtration naturelle associée à Bt, alors l'intégrale d'Itô
est définie par la limite L2 de
lorsque le pas de la partition de [0,T] tend vers 0.
[modifier] Voir aussi
- Processus d'Itô
- Calcul stochastique
- Intégrale de Stratonovich
![]() |
Portail des mathématiques – Accédez aux articles de Wikipédia concernant les mathématiques. |