Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Discuter:Théorème de d'Alembert-Gauss - Wikipédia

Discuter:Théorème de d'Alembert-Gauss

Un article de Wikipédia, l'encyclopédie libre.


Clé : le nom du mathématicien est d'Alembert ... ne serait-il pas logique de chercher à la lettre D ? --Ąļḋøø 25 aoû 2004 à 15:49 (CEST)

Non le nom est Alembert, la particule ne compte jamais dans le tri comme Ludwig van Beethoven est trie a Beethoven
Xmlizer 26 aoû 2004 à 13:34 (CEST)

[modifier] Lien théorème de Gauss

J'aurais tendance à virer comme hors-sujet la phrase sur le théorème de Gauss en électromagnétisme (ou en analyse vectorielle, si on veut). Qu'est-ce que vous en pensez ? Je pose la question parce que c'est un problème assez général : certes, une ligne comme celle-là permet au lecteur égaré de trouver le bon article. Mais à force de faire ça, on a plein de page qui au lieu d'avoir un sujet (et c'est ça, un article ! un texte sur un sujet) commencent par signaler que non, elles ne parlent pas de telle chose, enfin si peut-être, etc. Bref.

MM 25 oct 2004 à 20:42 (CEST) (un peu avant, en fait, oublié de signer)

[modifier] Théorème de D'Alembert-Gauss

D'abord, dans l'historique, il y a un mélange avec le théorème de Gauss relatif à la théorie du potentiel (et donc à l'électrostatique). Ah les fusions ! Cela dit, il y a de nombreuses démonstrations de ce théorème ; Gauss lui-même, si je me souviens bien, en a fourni deux différentes, et certainement pas en utilisant le théorème de Liouville. Je peux donner une démonstration du théorème de Liouville (hélas, pas de moi !) et donc du théorème susdit en utilisant seulement l'analyse réelle (on montre que toute fonction harmonique bornée sur Rn est constante). Donc, ni Liouville ni analyse complexe ne sont nécessaires. Ce qui reste irréductible à l'algèbre, sauf erreur, est qu'un polynôme à coefficients réels et de degré impair a au moins une racine. Donc la remarque est bienvenue (y compris la citation du théorème de Liouville) mais il faut tourner les choses un peu autrement. CD 24 jan 2005 à 01:20 (CET)

On peut aussi utiliser les inégalités de Cauchy sans utiliser le théorème de Liouville.Claudeh5 25 juin 2006 à 19:37 (CEST)

[modifier] Une petite question

L'article contient au fait deux phrases contradictoires qu'il serait intéressant d'élucider. Il est affirmé que les démonstrations du théorème font toujours appel à un argument topologique:


"La dénomination « théorème fondamental de l'algèbre » fait sourire certains car il s'agit d'un théorème « exogène » à l'algèbre, au sens où l'on n'en connaît pas de démonstration qui évite de faire appel à des outils d'analyse."


Pourtant R.vidonne a donné une référence où il affirme qu'il existe une preuve purement algébrique:


"Il existe une preuve purement algébrique du théorème fondamental de l'algèbre. Voir Alain Bouvier & Denis Richard, Editeur Hermann, ISBN 2705613838. Ouvrage malheuresement épuisé."


Quelqu'un peut il affirmer laquelle des deux affirmations est exacte? L0stman 27 avril 2006 à 21:47 (CEST)

La démonstration de Bouvier-Richard utilise ce pré-requis « tout polynôme à coefficient réels, de degré impair, possède une racine réelle » Peps 27 avril 2006 à 22:04 (CEST)
Merci de la précision Peps.J L0stman 28 avril 2006 à 13:45 (CEST)
ce qui est trivial d'un côté et utilise tout de même l'analyse (réelle) dans l'autre. Version cependant faible du théorème de Bolzano qui lui-même mène au théorème des valeurs intermédiaires...Claudeh5 25 juin 2006 à 19:40 (CEST)
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu