Darboux-tulajdonság
A Wikipédiából, a szabad lexikonból.
A Darboux-tulajdonság az analízisben a folytonossággal rokon, de azzal korántsem egyenértékű, rendkívül szemléletes függvénytulajdonság. Lényegében azt jelenti, hogy egy intervallumon értelmezett valós függvény két függvényértéke között minden értéket felvesz.
[szerkesztés] Definíció
Legyen I ⊂ R intervallum és f: I R függvény. Azt mondjuk, hogy az f függvény Darboux–tulajdonságú, ha teljesül a következő kijelentés:
.
Vagy szavakban: egy Darboux-tulajdonságú függvény értelmezési tartományából bárhogy is választunk egy zárt intervallumot, a végpontok helyettesítési értékei közötti összes érték hozzá van rendelve a választott intervallum belsejének valamely pontjához.
[szerkesztés] Ekvivalens megfogalmazások
Állítás – Egy intervallumon értelmezett valós függvény pontosan akkor Darboux-tulajdonságú, ha az értelmezési tartományába eső bármely intervallum képe intervallum.
Ha ugyanis az f:IR függvény Darboux-tulajdonságú, akkor tetszőleges J ⊆ I intervallum esetén azt kell megmutatnunk, hogy f(J) szintén intervallum. Ha u < u' az f(J) két eleme, akkor alkalmas x és x'-vel u=f(x) és u'=f(x'). Feltehetjük, hogy x < x'. Világos, hogy minden u és u' közé eső v érték esetén létezik olyan x < ξ < x', hogy v=f(ξ), amiből (u,u') ⊆ f(J) és amiből viszont következik, hogy f(J) intervallum.
Másrészt, ha az f:IR függvény olyan, hogy minden az értelmezési tartományába eső bármely intervallum képe intervallum, akkor legyen a < b két I-beli elem úgy, hogy f(a) ≠ f(b). Szintén feltehetjük, hogy f(a) < f(b). A feltétel miatt (f(a),f(b)) ⊆ [f(a),f(b)] ⊆ f([a,b]). Mivel f([a,b]) és f((a,b)) is intervallum ezért f([a,b])=f((a,b)) ∪ {f(a),f(b)}. Tegyük fel indirekten, hogy tetszőleges y ∈ (f(a),f(b))-beli elem esetén nincs olyan ξ ∈ (a,b), melyre f(ξ)=y lenne. Mivel f([a,b]) és f((a,b)) is intervallum ezért f([a,b])=f((a,b)) ∪ {f(a),f(b)}, így y=f(ξ) csak f(a), vagy f(b) lehet, ami ellentmond az y ∈ (f(a),f(b)) feltételnek.
Mindezek miatt a Darboux-tulajdonságot néha ki szokták terjeszteni tetszőleges valós-valós függvényre a következőképpen:
- Az f:R
R függvény Darboux-tulajdonságú, ha az értelmezési tartományában lévő intervallum képe intervallum.
[szerkesztés] A Darboux-tulajdonsághoz kapcsolódó tételkör
- Minden intervallumon értelmezett folytonos függvény Darboux-tulajdonságú. Ezt mondja ki a Bolzano-tétel (vagy ennek ekvivalens megfogalmazása, a Bolzano–Darboux-tétel).
- Minden deriváltfüggvény Darboux-tulajdonságú. Ez nem más mint a Darboux-tétel. Természetesen, folytonosan differenciálható függvények esetén ez a Bolzano–Darboux-tétel következménye. Ám, lehetséges, hogy a deriváltfüggvénynek szakadása van, de a Darboux-tétel állítása szerint nem lehet „ugrása”.
- Hangsúlyozzuk, hogy nem minden Darboux-tulajdonságú függvény folytonos. Például az f(x)=x2sin(1/x), f(0)=0 függvény deriváltfüggvénye létezik (tehát Darboux), de a 0 pontban másodfajú szakadása van (tehát ott nem folytonos).
- Sehol sem folytonos Darboux-függvényt transzfinit indukcióval, vagy a Hamel-bázis segítségével definiálhatunk.