New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Teorema di Modigliani-Miller - Wikipedia

Teorema di Modigliani-Miller

Da Wikipedia, l'enciclopedia libera.

Economia finanziaria
Economia e Finanza
Progetto Economia
Caffè Economico
Glossario economico
Categoria:Economia

In finanza, il teorema di Modigliani-Miller (dagli economisti Franco Modigliani e Merton Miller che ne proposero la formulazione originale) costituisce la base della moderna teoria della struttura del capitale. Nella sua formulazione più semplice, il teorema afferma che, in assenza di tasse, costi di fallimento, asimmetrie informative, in un mercato efficiente il valore di un'impresa non è affetto dalla modalità con cui l'impresa si finanzia. Non importa dunque se l'impresa ottiene il proprio capitale raccogliendo finanziamenti tramite l'emissione di azioni o tramite debito; allo stesso modo la politica di dividendo non ha effetti sul valore dell'impresa. Il teorema è costituito da due proposizioni distinte, che possono essere estese a una situazione che prevede la presenza di tassazione.

Il teorema di Modigliani-Miller rappresenta inoltre un'importante contributo alla teoria della finanza aziendale, o corporate finance, dal punto di vista metodologico; con il lavoro di Modigliani e Miller del 1958 si introducono infatti per la prima volta gli strumenti analitici formali dell'economia politica nell'analisi di un problema di corporate finance.

Indice

[modifica] Proposizioni del teorema di Modigliani-Miller

Si considerino due imprese, identiche in tutto salvo la struttura del capitale. La prima impresa, detta U, è unleveraged, ossia il suo capitale è interamente costituito da capitale di rischio (cioè è interamente versato dagli azionisti nel caso di una società per azioni). L'altra impresa, detta L, è levereged, ossia il suo capitale è in parte costituito da equity o capitale di rischio, in parte da debito. La prima proposizione del teorema di Modigliani-Miller afferma che il valore delle due imprese è il medesimo:

\ V_U=V_L

dove \ V_U è il valore dell'impresa U, \ V_L quello dell'impresa L. \ V_U è pari al costo di acquistare tutte le azioni dell'impresa U, \ V_L al costo di acquistare tutte le azioni dell'impresa L e di ripagarne il debito per intero.

Il ragionamento alla base del risultato è brevemente illustrato: si consideri il caso di un investitore che intende acquistare l'impresa U o l'impresa L. Invece di acquistare tutte le azioni dell'impresa L, potrebbe acquistare le azioni dell'impresa U e indebitarsi per un ammontare pari al debito di L. I rendimenti da entrambi gli investimenti sarebbero identici. Dunque il prezzo di tutte le azioni di L deve essere uguale a quello di tutte le azioni di U, meno il debito di L.

Questa discussione chiarifica alcune delle ipotesi del teorema. Si è infatti implicitamente ipotizzato che il costo del debito per l'investitore sia lo stesso che per l'impresa L; ciò non è necessariamente verificato in caso di mercati inefficienti o asimmetrie informative.

Quanto alla seconda proposizione, essa stabilisce la seguente relazione tra dell'equity, o capitale di rischio, \ r_S per un'impresa, il costo del capitale per un'impresa il cui capitale è costituito esclusivamente da equity, \ r_0, il costo del debito \ r_B e il rapporto debito-equity (o leva finanziaria, a seconda delle definizioni) \ \frac{B}{S}:

\ r_S=r_0+\frac{B}{S}\left(r_0-r_B\right)

La proposizione afferma dunque che il costo del capitale dell'equity è una funzione lineare della leva finanziaria dell'impresa. Ad una maggiore leva finanziaria (ovvero piu' debito rispetto al capitale]] implica un più alto costo del capitale proprio, a causa del maggiore rischio (intesa come volatilita') a carico degli azionisti dell'impresa.

Entrambe le proposizioni sono valide sotto l'ipotesi che non sussistano imposizione fiscale e costi di transazione, nonché che investitori e imprese possano indebitarsi allo stesso tasso. Se da un lato queste condizioni non sono in genere verificate nei mercati reali, come fatto rilevare dagli stessi Modigliani e Miller nel loro contributo originale, l'importanza del teorema sta nel fatto che la struttura del capitale ha rilevanza precisamente perché una delle condizioni è violata. Il teorema fornisce dunque delle indicazioni circa quali fattori possano determinare la struttura del capitale.

[modifica] Estensioni

[modifica] Risultato di Modigliani-Miller in presenza di tassazione

In presenza di tassazione, le espressioni presentate sopra sono leggermente modificate. Denotando tramite \ T_C l'aliquota d'imposta e tramite \ B il valore del debito, la prima proposizione del teorema diventa:

\ V_L=V_U+T_CB

Il significato dell'espressione sopra è che le imprese possono trarre vantaggio dall'indebitamento, dal momento che possono dedurre dal pagamento delle imposte sugli utili i pagamenti di interessi, così che l'indebitamento riduce il livello di tassazione; per contro, i pagamenti di dividendi agli azionisti, che costituiscono interamente il costo del capitale per un'impresa che non ha debito, non sono di norma deducibili ai fini fiscali.

La seconda proposizione diventa inoltre:

\ r_S= r_0+\frac{B}{S}(r_0-r_S)\left(1-T_C\right)

con analoga interpretazione al caso precedente.

La conclusione dell'estensione del teorema originario all'ipotesi di un'economia con tasse è che le imprese traggono un vantaggio, in termini di imposizione fiscale, dal debito. In assenza di svantaggi a controbilanciare il guadagno fiscale derivante dal debito, le imprese dovrebbero finanziare i loro investimenti esclusivamente tramite debito.

Naturalmente quest'ultima conclusione non è realistica, da un punto di vista positivo — in genere, le imprese fanno anche ricorso al capitale di rischio, o equity — né da un punto di vista normativo — sarebbe rischioso per le imprese indebitarsi oltre misura. Modigliani e Miller mettono le mani avanti, consci del fatto che il loro elegante modello presta il fianco a tali critiche; nello stesso lavoro in cui sviluppano le due proposizioni in presenza di tassazione, sottolineano come un aumento del debito innescherà inevitabilmente dei costi, derivanti ad esempio da un aumento parallelo della probabilità di insolvenza dell'impresa, che andranno a bilanciare i vantaggi fiscali. La soluzione del trade-off tra vantaggio fiscale e svantaggio derivante dalla probabilità di insolvenza determinerà una struttura ottimale del capitale. Questo risultato altro non è che la prima espressione di una serie di teorie della struttura ottimale del capitale che vanno sotto il nome comune di teorie del trade-off.

[modifica] Bibliografia

  • Modigliani, F. e Miller, M. (1958) The Cost of Capital, Corporate Finance, and the Theory of Investment, American Economic Review, 48(3), 261-297.
  • Modigliani, F. e Miller, M. (1963) Corporate Income Taxes and the Cost of Capital: A Correction, American Economic Review, 53(3), 433-443.

[modifica] Voci correlate

Altre lingue

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu