New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Wielomian minimalny - Wikipedia, wolna encyklopedia

Wielomian minimalny

Z Wikipedii

Wielomianem minimalnym macierzy kwadratowej A nazywamy wielomian anulujący macierzy A ψ(λ) tzn. ψ(A) = 0 stopnia najniższego względem λ o współczynniku jeden przy najwyższej potędze λ.


Należy wiedzieć, że istnieje tylko jeden wielomian minimalny macierzy kwadratowej A.


Wielomian minimalny ψ(λ) macierzy A jest związany z wielomianem charakterystycznym \varphi (\lambda) następującą zależnością:

\psi (\lambda)={{\varphi (\lambda)}\over {D_{n-1}(\lambda)}} przy czym Dn − 1(λ) jest największym wspólnym dzielnikiem wszystkich elementów macierzy dołączonej EA]D, gdzie E jest macierzą jednostkową o tym samym wymiarze co macierz A.


Powyższa zależność jest przydatna przy wyznaczaniu wielomianu minimalnego.

Algorytm wyznaczania wielomianu minimalnego ψ(λ) macierzy A:

1. Wyznaczamy wielomian charakterystyczny \varphi (\lambda) macierzy A.

2. Wyznaczamy macierz dołączoną EA]D macierzy A.

3. Znajdujemy Dn − 1(λ) będący największym wspólnym dzielnikiem macierzy dołączonej EA]D.

4. Korzystając z wzoru \psi (\lambda)={{\varphi (\lambda)}\over {D_{n-1}(\lambda)}} wyznaczamy szukany wielomian minimalny macierzy A.


[edytuj] Przykład

Wyznaczmy wielomian minimalny macierzy:

A=\left(\begin{matrix} 1& 0& 0\\ 0& 1& 1\\ 0& 0& 1 \end{matrix}\right).


Wyznaczamy najpierw wielomian charakterystyczny macierzy A:


\varphi (\lambda)=\left|\begin{matrix} \lambda -1& 0& 0\\ 0& \lambda -1& -1\\ 0& 0& \lambda -1 \end{matrix}\right|=(\lambda -1)^3.


Następnie obliczamy macierz dołączoną EA]D macierzy A, więc wyznaczamy dopełnienia algebraiczne elementów macierzy A:


D_{11}=\left|\begin{matrix} \lambda -1& -1\\ 0&\lambda -1 \end{matrix}\right|=(\lambda -1)^2,D_{12}=- \left|\begin{matrix} 0 & -1\\ 0& \lambda -1 \end{matrix}\right|=0,D_{13}=\left|\begin{matrix} 0& \lambda -1\\ 0& 0 \end{matrix}\right|=0,


D_{21}=- \left|\begin{matrix} 0& 0\\ 0&\lambda -1 \end{matrix}\right|=0,D_{22}=\left|\begin{matrix} \lambda -1& 0\\ 0&\lambda -1 \end{matrix}\right|=(\lambda -1)^2,D_{23}=- \left|\begin{matrix} \lambda -1& 0\\ 0& 0 \end{matrix}\right|=0,


D_{31}= \left|\begin{matrix} 0& 0\\ \lambda -1& -1 \end{matrix}\right|=0,D_{32}= - \left|\begin{matrix} \lambda -1& 0\\ 0& -1 \end{matrix}\right|=\lambda -1,D_{33}= \left|\begin{matrix} \lambda -1& 0\\ 0& \lambda -1 \end{matrix}\right|=(\lambda -1)^2.


Aby więc otrzymać macierz dołączoną, należy zastąpić elementy danej macierzy przez ich dopełnienia algebraiczne i dokonać transpozycji. Ostatecznie macierz dołączona EA]D podanej macierzy A ma postać:


[\lambda E-A]^{D}=\left(\begin{matrix} (\lambda -1)^2& 0& 0\\ 0&(\lambda -1)^2 & \lambda -1\\ 0& 0& (\lambda -1)^2 \end{matrix}\right).

Wszystkie elementy macierzy dołączonej są podzielne przez: λ − 1 zatem ze wzoru: \psi (\lambda)={{\varphi (\lambda)}\over {D_{n-1}(\lambda)}} otrzymujemy, że szukany wielomian minimalny zadanej macierzy A ma postać: ψ(λ) = (λ − 1)2.

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu