Радиальная симметрия
Материал из Википедии — свободной энциклопедии
Радиальная симметрия — форма симметрии, сохраняющаяся при вращении объекта вокруг определённой точки или прямой. Часто эта точка совпадает с центром тяжести объекта, то есть той точкой, в которой пересекается бесконечное количество осей симметрии. Подобными объектами могут быть круг, шар, цилиндр или конус. Равнобедренные треугольники радиально симметричны при вращении на 120° или 240°.
[править] Биология
В биологии о радиальной симметрии идёт речь, когда через трёхмерное существо проходят две или более плоскости симметрии. Эти плоскости пересекаются в прямой. Если животное будет вращаться вокруг этой оси на определённый градус, то оно будет отображаться само на себе. В двухмерной проекции радиальная симметрия может сохраняться, если ось симметрии направлена перпедникулярно к проекционной плоскости. Иными словами, сохранение радиальной симметрии зависит от угла наблюдения.
Радиальная симметрия характерна для многих стрекающих, а также для большинства иглокожих. Среди них встречается так называемая пентасимметрия, базирующаяся на пяти плоскостях симметрии. От радиальной симметрии различаются двулучевая радиальная симметрия (две плоскости симметрии, к примеру гребневики), а также билатеральная симметрия (одна плоскость симметрии,к примеру двусторонне-симметричные).
В ботанике часто встречаются радиально симметрично построенные цветы: 3 плоскости симметрии (водокрас лягушачий), 4 плоскости симметрии (лапчатка прямая), 5 плоскостей симметрии (колокольчик), 6 плоскостей симметрии (безвременник).