Управление ядерным реактором
Материал из Википедии — свободной энциклопедии
Содержание |
[править] Снижение реактивности
Реактор, находящийся в критическом состоянии (см. Коэффициент размножения нейтронов) как угодно долго, представляет собой математическую абстракцию. На самом деле, протекающие в реакторе процессы вызывают ухудшение размножающих свойств среды, и без механизма восстановления реактивности реактор не смог бы работать даже малое время. Обращение нейтронов в реакторе включает процесс деления; каждый акт деления означает убыль атома делящегося материала, а значит, и снижение k0. Правда, делящиеся атомы частично восстанавливаются за счёт поглощения избытка нейтронов ядрами 238U с образованием 239Pu. Однако накопление нового делящегося материала обычно не компенсирует потерь делящихся атомов, и реактивность снижается. Кроме того, каждый акт деления сопровождается появлением двух новых атомов, ядра которых, как и любые другие ядра, поглощают нейтроны. Накопление продуктов деления также снижает реактивность (см. Отравление ядерного реактора). Наконец, просто повышение температуры активной зоны реактора обычно сопровождается снижением реактивности, а активные зоны энергетических реакторов должны быть разогреты до возможно бо́льшей температуры, поскольку коэффициент полезного действия тепловой машины в конечном счёте определяется разностью температур источника тепла и холодильника — окружающей среды.
[править] Система управления
Ядерный реактор может работать с заданной мощностью в течение длительного времени только в том случае, если в начале работы имеет запас реактивности. Освобождение связанной реактивности по мере её снижения в силу естественных причин обеспечивает поддержание критического состояния реактора в каждый момент его работы. Первоначальный запас реактивности создается путём постройки активной зоны с размерами, значительно превосходящими критические. Чтобы реактор не становился надкритичным, одновременно искусственно снижается k0 размножающей среды. Это достигается введением в активную зону веществ-поглотителей нейтронов, которые могут удаляться из активной зоны в последующем. Так же как и в элементах регулирования цепной реакции, вещества-поглотители входят в состав материала стержней того или иного поперечного сечения, перемещающихся по соответствующим каналам в активной зоне. Но если для регулирования достаточно одного-двух или нескольких стержней, то для компенсации начального избытка реактивности число стержней может достигать сотни. Эти стержни называются компенсирующими. Регулирующие и компенсирующие стержни не обязательно представляют собой различные элементы по конструктивному оформлению. Некоторое число компенсирующих стержней может быть стержнями регулирования, однако функции тех и других отличаются. Регулирующие стержни предназначены для поддержания критического состояния в любой момент времени, для остановки, пуска реактора, перехода с одного уровня мощности на другой. Все эти операции требуют малых изменений реактивности. Компенсирующие стержни постепенно выводятся из активной зоны реактора, обеспечивая критическое состояние в течение всего времени его работы.
Иногда стержни управления делаются не из материалов-поглотителей, а из делящегося вещества или материала-рассеивателя. В тепловых реакторах — это преимущественно поглотители нейтронов, эффективных же поглотителей быстрых нейтронов нет. Такие поглотители, как кадмий, гафний и другие, сильно поглощают лишь тепловые нейтроны благодаря близости первого резонанса к тепловой области, а за пределами последней ничем не отличаются от других веществ по своим поглощающим свойствам. Исключение составляет бор, сечение поглощения нейтронов которого снижается с энергией значительно медленнее, чем у указанных веществ, по закону l / v. Поэтому бор поглощает быстрые нейтроны хотя и слабо, но несколько лучше других веществ. Материалом-поглотителем в реакторе на быстрых нейтронах может служить только бор, по возможности обогащенный изотопом 10В. Помимо бора в реакторах на быстрых нейтронах для стержней управления применяются и делящиеся материалы. Компенсирующий стержень из делящегося материала выполняет ту же функцию, что и стержень-поглотитель нейтронов: увеличивает реактивность реактора при естественном её снижении. Однако, в отличие от поглотителя, такой стержень в начале работы реактора находится за пределами активной зоны, а затем вводится в активную зону. Из материалов-рассеивателей в быстрых реакторах употребляется никель, имеющий сечение рассеяния быстрых нейтронов несколько больше сечений других веществ. Стержни-рассеиватели располагаются по периферии активной зоны и их погружение в соответствующий канал вызывает снижение утечек нейтронов из активной зоны и, следовательно, возрастание реактивности. В некоторых специальных случаях целям управления цепной реакцией служат подвижные части отражателей нейтронов, при перемещении изменяющие утечки нейтронов из активной зоны. Регулирующие, компенсирующие и аварийные стержни совместно со всем оборудованием, обеспечивающим их нормальное функционирование, образуют систему управления и защиты реактора (СУЗ).
[править] Аварийная защита
- Основная статья: Аварийная защита ядерного реактора
На случай непредвиденного катастрофического развития цепной реакции, а также возникновения других аварийных режимов, связанных с энерговыделением в активной зоне, в каждом реакторе предусмотрено экстренное прекращение цепной реакции, осуществляемое сбрасыванием в активную зону специальных аварийных стержней или стержней безопасности. Аварийные стержни изготовляются из поглощающего нейтроны материала. Они сбрасываются под действием силы тяжести в центральную часть активной зоны, где поток наибольший, а значит, и наиболее велика отрицательная реактивность, вносимая в реактор стержнем. Стержней безопасности, как и регулирующих, обычно два или несколько, однако в отличие от регуляторов они должны связывать возможно бо́льшую величину реактивности. Роль стержней безопасности может выполнять и часть компенсирующих стержней.
[править] Литература
- Климов А. Н. Ядерная физика и ядерные реакторы. М. Атомиздат, 1971.
- Левин В. Е. Ядерная физика и ядерные реакторы. 4-е изд. — М.: Атомиздат, 1979.
- Петунин В. П. Теплоэнергетика ядерных установок М.: Атомиздат, 1960.