New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Mutlak değer - Vikipedi

Mutlak değer

Vikipedi, özgür ansiklopedi

Matematikte, mutlak değer (ya da mutlak değer fonksiyonu) bir gerçel sayının işaretsiz sayısal değerini verir. Örneğin, 3; hem 3'ün hem de −3'ün mutlak değeridir. Bilgisayarlarda ise, bu fonksiyonu ifade etmek için kullanılan matematiksel fonksiyon genelde abs(...)'dir (Örneğin: abs(−8)=|−8|=8 gibi).

Mutlak değer fonksiyonunun gerçel sayılarla kullanımı dışında, geniş bir matematiksel kullanım alanı vardır. Örneğin, mutlak değer karmaşık sayılar gibi kümeler için de tanımlanabilir.


Mutlak değer fonksiyonunun gerçel sayılardaki grafiği.
Mutlak değer fonksiyonunun gerçel sayılardaki grafiği.

[değiştir] Gerçel sayılar

Her a, gerçel sayısının mutlak değeri | a | , şeklinde ifade edilir ve şu şekilde tanımlanır:

|a| = \begin{cases} a, &   a \ge 0  \\ -a,  &  a < 0. \end{cases}

Yukarıda da görüldüğü gibi a'nın mutlak değeri ya artı ya da sıfır değerini alacak, hiçbir zaman eksi değeri almayacaktır.

Geometrik anlamda, bir gerçel sayının mutlak değeri onun sayı doğrusunda sıfıra olan uzaklığıdır. Daha genel anlamdaysa mutlak değer iki reel sayı arasındaki farkı, sayı doğrusunda aralarındaki uzaklık olarak verir.

Aşağıdaki yordamlar bir mutlak değerin çözümünde yardımcı olabilecek önermeler içerir.

1. ÖNERME:

|a| = \sqrt{a^2}


2. ÖNERME:

Mutlak değer aşağıdaki dört temel özelliğe sahiptir:

|a| \ge 0 Negatif olmama
|a| = 0 \iff a = 0 Sıfır eşitliği
|ab| = |a||b|\, Çarpanlara ayrılabilme
|a+b|  \le |a| + |b| Schwarz Eşitsizliği


3. ÖNERME:

Mutlak değerin diğer önemli özellikleri ise:

|-a| = |a|\, Simetri
|a - b| = 0 \iff a = b a ve b eştir
|a - b|  \le |a - c| +|c - b| Üçgen eşitsizliği
|a/b| = |a| / |b| \mbox{ (if } b \ne 0) \, Bölmenin ayrılması (çarpanlara ayrılabilirlik gibi)
|a-b| \ge |a| - |b| (Alt toplananlara ayrılabilirlik)


Diğer iki kullanışlı eşitsizlikler ise:

|a| \le b \iff -b \le a \le b
|a| \ge b \iff a \le -b \mbox{ or } b \le a


Aşağıdakilerse genelde eşitsizlik çözümünde kullanılır; örneğin:

|x-3| \le 9 \iff -9 \le x-3 \le 9
\iff -6 \le x \le 12

[değiştir] Karmaşık sayılar

Karmaşık sayılara kadar olan kısımda, verilen mutlak değer özellikleri karmaşık sayılar kümesine aynen uygulanamaz. Önerme 1'i ele alırsak:

|a| = \sqrt{a^2}

her gerçel sayının bir karmaşık sayı olduğunu ve,

bir karmaşık sayının

z = x + iy\,

olduğunu düşünürsek göreceğiz ki, gerçel sayılarda y katsayısı 0'a eşit. Öyleyse gerçekte z'nin mutlak değer (ya da karmaşık sayılarda bazen modül olarak adlandırılır) şu şekilde tanımlanabilir.

|z| =  \sqrt{x^2 + y^2}.

Öyleyse bir gerçel sayıda bu işlemi şöyle gerçekleştirebiliriz:

|x + i0| = \sqrt{x^2 + 0^2} = \sqrt{x^2} = |x|.

Mutlak değer bir sayının orijine uzaklığını verir. Karmaşık sayılar iki boyutlu düzlem üzerinde incelendiğinden Pisagor teoremi iki nokta arasındaki uzaklığı bulmada işimize yarayacaktır.Karmaşık düzlemde iki karmaşık sayı arasındaki uzunluğu bulmak içinse aynı gerçel sayılardaki gibi iki sayının farkının mutlak değerini alırız.

Karmaşık sayılar yukarıda verilen 2. ve 3. önermelerin tüm özelliklerini taşır. Bununla beraber,

z = x + \mathrm{i}y = r (\cos \phi + \mathrm{i}\sin \phi ) \,

ise, ve

\bar{z} = x - iy

z karmaşık sayısının eşlenik'i ise, açıkça görülür ki:

|z| = r\,
|z|=|\bar{z}|
|z| = \sqrt{z\bar{z}}

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu