Евклідів простір
Матеріал з Вікіпедії — вільної енциклопедії.
Евклідів простір в математиці -- це n-вимірний метричний простір, характеристики якого неформально можна вважати узагальненнями звичних та досліджуваних Евклідом 2- та 3-вимірних просторів.
[ред.] Евклідова метрика
Нехай декартові координати в тривимірному просторі такі, що якщо точці P відповідають три її координати (x1, x2, x3), а точці Q -- координати (y1, y2, y3). Тоді, якщо квадрат довжини прямолінійного відрізку, що з'єднує P та Q дорівнює: l2 = (x1 - y1)2 + (x2 - y2)2 + (x3 - y3)2, то такий простір називають евклідовим простором, а декартові координати з такими властивостями називають евклідовими координатами.
Узагальнюючи на випадок n вимірів, отримаємо .
Функція відстані між двома точками має назву метрики, а наведений вище вид такої функції для евклідового простору має назву евклідової метрики.
[ред.] Вектори в евклідовому просторі
З точками евклідового простору зручно співставляти вектори. Назвемо вектор, направлений від початку координат у точку P радіус-вектором цієї точки. Декартові координати (x1, x2, x3) точки Р будемо називати координатами радіус-вектора. Два вектори, які направлені з початку координат до точок P та Q з координатами p= (x1, x2, x3) та q= (y1, y2, y3) можна складати покоординатно. Тобто отримати вектор p+q з координатами (x1 + y1, x2 + y2, x3 + y3).
Можна також домножити вектор на число (скаляр). Одиничні вектори e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) мають довжину, яка дорівнює 1, а самі вектори взаємоперпендикулярні.
Будь-який вектор v (x1, x2, x3) може бути розкладений по одиничних векторах: v = e1x1 + e2x2 + e3x3. Тут простір тривимірний. Для n-вимірного простору все аналогічно. Тому евклідів простір визначається також як лінійний (векторний) простір, в якому квадрат відстані між точками (кінцями радіус-векторів) визначається за формулою